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Graphical Abstract

Proteolytic processing events in adhesion GPCRs. aGPCRs can undergo multiple autoproteolytic

(red asterisks) and proteolytic processing events by exogenous proteases (yellow asterisks) that
may be involved in signaling events of the receptors.
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Abstract

Proteolytic processing is an unusual property of adhesion family G protein-

coupled receptors (aGPCRs) that was observed upon their cloning and biochem-

ical characterization. Ever since, much effort has been dedicated to delineate the

mechanisms and requirements for cleavage events in the control of aGPCR

function. Most notably, all aGPCRs possess a juxtamembrane protein fold, the

GPCR autoproteolysis-inducing (GAIN) domain, which operates as an

autoprotease for many aGPCR homologs investigated thus far. Analysis of its

autoproteolytic reaction, the consequences for receptor fate and function, and the

allocation of physiological effects to this peculiar feature of aGPCRs has

occupied the experimental agenda of the aGPCR field and shaped our current

understanding of the signaling properties and cell biological effects of aGPCRs.

Interestingly, individual aGPCRs may undergo additional proteolytic steps, one

of them resulting in shedding of the entire ectodomain that is secreted and can

function independently. Here, we summarize the current state of knowledge on

GAIN domain-mediated and GAIN domain-independent aGPCR cleavage

events and their significance for the pharmacological and cellular actions of

aGPCRs. Further, we compare and contrast the proteolytic profile of aGPCRs

with known signaling routes that are governed through proteolysis of surface

molecules such as the Notch and ephrin pathways.
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1 Forms of Proteolytic Processing Events in aGPCRs

1.1 GAIN-Mediated GPS Cleavage

One of the structural and functional hallmarks of aGPCRs is the juxtamembrane

localization of a highly conserved GPCR proteolysis site (GPS) motif (Fig. 1)

[1–3]. All aGPCRs, except GPR123/ADGRA1, contain the GPS motif [1]. Proteo-

lytic modification of aGPCRs was first reported for CD97/ADGRE5 in 1996 by

Kelly and colleagues [4]. They revealed a novel two-subunit structure of CD97,

consisting of an extracellular fragment and a seven-transmembrane (7TM) frag-

ment derived from a proprotein precursor. Petrenko et al. later identified the

cleavage site and coined the term GPS to describe the proteolytic processing of

CIRL/latrophilin/ADGRL1 [5, 6].
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SEA domain
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Fig. 1 Proteolytic processing events of adhesion GPCRs. aGPCRs can undergo multiple

autoproteolytic (red asterisks) and proteolytic processing events by exogenous proteases (yellow
asterisks) that may be involved in signaling events of the receptors. The most prevalent cleavage of

aGPCR family occurs at the GPCR proteolytic site (GPS; dark blue circle) and is catalyzed by the
GPCR autoproteolysis-inducing (GAIN) domain (light blue). Another type of autoproteolysis is

governed by the SEA domain (pink box) and shares similarities with GAIN domain cleavages.

aGPCRs can also be substrates for proteases and release parts of the ECD. Exemplary aGPCR

homologs and associated proteolytic processing events are indicated on the left
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The GPS motif of ~50 amino acids contains a highly conserved tripeptide

cleavage sequence and several canonical cysteine and tryptophan residues

[2]. Moreover, the 6–8 residues C-terminal to the cleavage site are usually small

and hydrophobic [7]. The cleavage tripeptide almost always starts with His,

followed by Leu/Ile and Ser/Thr, with proteolysis occurring between Leu/Ile and

Ser/Thr (HL/I#S/T) [2, 3]. Most interestingly, GPS proteolysis is not executed by

any proteinases, but is brought about by an autocatalytic mechanism analogous to

that of hedgehog morphogens [8, 9] and Ntn-hydrolases [10–14]. It is concluded

that the GPS proteolytic reaction is most likely initiated by the deprotonation of

the hydroxyl group of the P+1 residue (Ser/Thr) by the P�2 His residue. This is

followed by a cis-nucleophilic attack on the α-carbonyl carbon of the P�1 Leu/Ile

residue, producing a tetrahedral intermediate. An ester intermediate is subsequently

generated via an N!O acyl shift. Finally, the attack by H2O cleaves the ester bond

splitting the receptor into two protein fragments (Fig. 2) [11]. The two fragments

usually do not separate after proteolysis, but instead associate non-covalently

to form a mature heterodimeric receptor complex on the cell surface [6, 15]. Inter-

estingly, the GPS motif is absolutely necessary for proteolysis, but is insufficient to

mediate the autoproteolytic reaction on its own [7].
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Fig. 2 The GAIN domain and GPS autoproteolysis of adhesion GPCRs. A schematic diagram of

an aGPCR is shown. Located at the C-terminal half of the NTF, the GAIN domain is divided into

the subdomain A (pink) and subdomain B (light green). The GPS motif (blue) is a part of

subdomain B. The proposed mechanism of the GPS autoproteolytic reaction is shown inside the

red circle. A His or another general base withdraws a proton from the hydroxyl group of a Ser or

Thr at position +1. The resulting negatively charged oxygen makes a nucleophilic attack on the

carbonyl group of the residue at position �1 (e.g., a Leu), yielding a tetrahedral intermediate and

subsequently an ester intermediate. The resulting ester is then hydrolyzed to produce the NTF and

CTF that form the mature protein
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Interestingly, while it is well accepted now that the GPS proteolysis is a self-

catalytic intramolecular reaction, the proteolytic efficiency is not always complete.

Indeed, both processed and unprocessed GPR56/ADGRG1 and polycystin-1

receptors have been detected in vivo [16–18]. Moreover, crystals of two structurally

similar GPS-containing fragments of CIRL/latrophilin and BAI3/ADGRB3 were

described, the former in a completely cleaved and the latter in a non-cleaved

conformation [19]. Hence, it is suggested that the GPS domain-containing receptors

might adopt receptor folding conditions that either promote or demote GPS cleav-

age depending on cell types and cellular environments [20, 21].

One critical factor regulating the GPS proteolysis is found to be the first step of

N-glycosylation during receptor biosynthesis in the ER [20, 21]. Other potential

factors include the specific conditions of aGPCR expression, including the cell type

and expression levels. While in the brain tissue only the cleaved form of CIRL/

latrophilin is detected, its heterologous expression in transfected cells yields only a

minor portion of the processed form that depends on the cell line used [5, 15]. Inter-

estingly, the receptor cleavage yield in transfected cells can be regulated by

pharmacological agents such as PMA and ionomycin, regulators of the protein

kinase pathway, suggesting the existence of intracellular signaling mechanisms to

fine-tune the autoproteolysis [22]. As with any chemical reaction, one can also

anticipate a contribution of local pH and ionic changes, as well as a direct involve-

ment of available nucleophilic molecules that serve as cofactors.

Pulse-chase experiments and use of various recombinant receptors and protein

trafficking inhibitors have identified the ER lumen as the major subcellular locali-

zation of GPS proteolysis [2, 4, 11, 15]. However, due to the highly regulated nature

of the GPS proteolytic reaction mentioned above, it is likely that GPS proteolysis

could also occur at a later time point during protein maturation or perhaps even at the

cell surface. Indeed, cell type-specific location of the GPS cleavage was reported for

polycystin-1, whose proteolysis may occur within the ER or post-ER [21].

Recent structural analyses finally delineate the peculiar requirement and

characteristics of GPS autoproteolysis. Crystallization of two aGPCRs,

Latrophilin-1/ADGRL1 and BAI3, identifies a much larger extracellular GPCR

autoproteolysis-inducing (GAIN) domain (~320 residues) that is sufficient and

minimally required for GPS autoproteolytic reaction [19] (see also [23]). In fact,

the GPS motif is an integral part of the GAIN domain. The crystal structure of the

GAIN domain shows a subdomain A of 6 α-helices and a subdomain B consisting of

a twisted β-sandwich of 13 β-strands and 2 small α-helices [19, 24]. The GPS motif

is enclosed in the last five β-strands of subdomain B, and the cleavage takes place in

a short kinked loop between the last two β-strands (Fig. 2) [19, 24]. The proper

folding of the GAIN domain, hence the arrangement of the scissile bond in a unique

configuration, provides an essential environment for the GPS autoproteolytic reac-

tion. Due to the lack of the conformational constraint and chemical environment

required for the proteolytic reaction, the GPS motif alone cannot mediate

autoproteolysis. In addition, the cleaved last β-strand is tightly embedded within

the rest of the GAIN domain, hence it is energetically unfavorable for the two

fragments to dissociate [19, 24].
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Interestingly, phylogenetic analysis shows that the GAIN domain is evolution-

arily conserved from tetrahymena to mammals. In fact, it is believed that the GAIN

domain is one of the most evolutionarily ancient and functional autoproteolytic

protein folds identified to date [19, 24]. The close proximity to the TM region and

the unique structural requirement for the GPS autoproteolytic reaction all suggest

an important role for the GAIN domain in aGPCR function [25]. Furthermore, the

GAIN domain is also present in all members of human polycystic kidney disease

1 (PKD1) protein family, suggesting a much wider usage of this novel domain in

receptor biology [19, 24]. Indeed, sequence mutations in the GAIN domain have

been linked to various human diseases, a clear indication of its role in regulating

receptor activities [17, 24, 26, 27]. How the GAIN domain-mediated

autoproteolysis may regulate receptor signaling and function will be discussed in

the later sections.

1.2 Other Autoproteolytic Cleavages of aGPCRs

Apart from the GPS autoproteolysis, additional autoproteolytic reactions were

noted for certain aGPCRs. Abe et al. showed that Ig-Hepta (GPR116/ADGRF5)

undergoes two specific proteolytic events in the extracellular region [28]. One of

the proteolytic sites identified is at the GPS motif, while the other is at the SEA

module located at the N-terminus of the receptor (Fig. 1). Identified first in three

different proteins (sea urchin sperm protein, enterokinase, and agrin) [29], the SEA

module is a conserved extracellular protein motif of ~80–110 residues usually

found in O-glycosylated mucin-like membrane proteins such as MUC1, MUC3,

MUC12, MUC13, and MUC17 [30–32]. A highly conserved G#S[V/I]VV sequence

is identified as the SEA domain proteolysis site (SPS) [32].

Interestingly, the SEA module-mediated proteolysis shares many similar

characteristics with GPS autoproteolysis. First, although some SEA module-

containing molecules are soluble proteins, the SEA module is mostly found in

cell-surface proteins and is located at the extracellular region of the molecule, near

or close to the TM region [32]. Second, the proteolytic modification takes place

within the ER during early protein biosynthesis. Third, proteolysis only proceeds

when the P+1 cleavage site is a residue containing a terminal hydroxyl group (Ser

and Thr) or thiol group (Cys) [33]. Fourth, proteolysis at the SEA domain is an

autocatalytic intramolecular reaction likely mediated by a series of nucleophilic

attacks and the formation and hydrolysis of an ester intermediate via an N!O acyl

shift and H2O, respectively [33–35]. Fifth, the autoproteolytic reaction is achieved

by conformational strain and requires strict and proper protein folding [34, 36,

37]. Finally, the resulting cleaved fragments remain associated non-covalently

following proteolysis [33, 35].

Two aGPCRs, GPR110/ADGRF1 and GPR116, are known to contain both the

SEA module and the GAIN domain [1]. Indeed, multiple proteolytic modifications

of GPR116 have been identified, leading to the formation of a mature receptor with

many non-covalently associated fragments [28, 38]. GPR116 has been linked to a
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number of physiological and pathological processes such as pulmonary surfactant

homeostasis, insulin insensitivity, and breast cancer metastasis [39–44]. However,

the role of autoproteolysis in the SEA module and GAIN domain in GPR116

function has yet to be investigated. Little is known regarding the proteolytic

modification of GPR110.

1.3 Cleavage of aGPCRs by Other Proteases

With aGPCR research on the rise, more and more homologs are identified as targets

of classical proteases such as furin or matrix metalloproteinase (MMP; Fig. 1).

These include BAI1/ADGRB1, BAI2/ADGRB2, GPR116, GPR126/ADGRG6, and

Latrophilin-1/ADGRL1 [38, 45–48]. Furin, a subtilisin-like proprotein convertase,

is a calcium-dependent serine endoprotease enriched in Golgi and is involved

predominantly in intracellular protein processing within the secretory pathway

[49]. Consistent with previous reports, the proteolytic site of BAI2, GPR116, and

GPR126 by furin was identified right after an Arg residue of a consensus furin-

cleavage sequence [38, 47, 48]. Interestingly, these furin-cleavage sites are all

located at the extracellular region N-terminal to the GPS and SEA domain. One

exception is the furin processing of Latrophilin-1, which occurs before an Arg

residue located C-terminal of the GPS motif within the CTF [46]. The furin-cleaved

aGPCR fragment was shown to either remain associated with the rest of the

molecule (GPR116) or released to the extracellular milieu (BAI2, GPR126,

Latrophilin-1). The functional significance of the furin-mediated proteolysis of

aGPCRs is currently unknown, but additional functions exerted by the shed recep-

tor ectodomain remain a possibility. Modulation of aGPCR activity by furin-

mediated shedding is also an alternative.

BAI1, initially identified as a brain-specific p53-regulated gene, is highly

expressed in normal but not tumor brain cells [50, 51]. GPS proteolysis of

BAI1 released a 120 kDa thrombospondin type-1 repeat (TSR)-containing

“vasculostatin” fragment with anti-angiogenic and anti-tumorigenic function

[50]. Later studies revealed another extracellular cleavage mediated by

MMP-14 at a more N-terminal region, producing a 40 kDa (vasculostatin-40)

fragment also with very potent anti-angiogenic activity [45]. In fact, the second

cleavage of BAI1 is processed by a two-step protease activation cascade in which

the latent MMP-14 is activated by furin [45]. Interestingly, the generation of

vasculostatin-120 by GPS autoproteolysis is not a prerequisite for vasculostatin-

40 production by MMP-14. Hence, intra- and extracellular proteolytic processing of

BAI1 to distinct ectodomain fragments by GPS autoproteolysis and MMP-14,

respectively, represents important activation and regulatory mechanisms for the

BAI1 receptor function [45].

Another interesting example of aGPCR cleavage involving a sheddase is the

dissociation of a CIRL/Latrophilin-1 two-subunit complex at the cell surface that

results in the secretion of its ectodomain that contains the intact GAIN domain

(Fig. 1). About 5% of the endogenous brain-expressed CIRL/latrophilin undergoes
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this processing. The soluble receptor form is comprised of NTF linked to a small

peptide fragment of CTF. This peptide was identified by mass spectrometry

indicating the location of the second cleavage site at the border between the

GAIN domain and the 7TM core. Similar processing was also shown for CIRL-2/

ADGRL2 [46].

2 Biological Effects Controlled Through aGPCR Proteolysis

The consequences and roles of the autoproteolytic processing of aGPCRs have been

under intense scrutiny since its discovery. Multiple experimental approaches have

been implemented to grasp this biochemical peculiarity of aGPCRs, and several

conclusions have been drawn from the results. We will discuss the most popular

ones below.

2.1 Trafficking

Several cell physiological consequences have been ascribed to the autoproteolytic

processing of aGPCRs at the GPS. Insights into these features derived from studies

of aGPCR and polycystin-1 homologs, in which the consensus site was mutated at

different positions in order to disable the autocatalytic reaction. The Latrophilin-1

homolog with a GPS disrupting mutation was the first receptor that was scrutinized

this way. It was noted that the GPS-deficient Latrophilin-1 variant did not traffic to

the cell surface lending support to a model, in which the posttranslational cleavage

event may function as a maturation signal during the biosynthesis of the receptor

molecule in the ER [15]. Later on, this hypothesis was further explored in several

other aGPCRs and polycystins returning mixed results: while impeded surface

expression was found for proteolysis-deficient versions of Latrophilin-1 [15] and

GPR126 [52], no such effect was noted for polycystin-1 [17], GPR133/ADGRG1

[53], and the nematode latrophilin homolog LAT-1 [54]. Also Latrophilin-1 was

reprobed and several GPS cleavage mutations did not affect cell-surface transport

of the receptor [19].

Also the GAIN-mediated cleavage of polycystin-1 has drawn interest to its

physiological requirement, and its investigation contributed insights into the role

of the proteolysis event. An allele of PKD1, which encodes for a cleavage-deficient
polycystin-1 product, leads to strong hypomorphic phenotypes that manifested

through defects in the development of kidney tubules [18] (see below). Follow-up

work on this effect suggests that the CTF of polycystin-1 may act as a cofactor

that is required for membrane trafficking of the NTF. The NTF subsequently

detaches from the CTF, but remains associated to the membrane, probably through

other surface receptors [55]. Similar findings were obtained for the NTF of the

aGPCR Latrophilin-1, whose CTF may also exist as a separate protomer at the cell

surface [56].
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Hence, it remains controversial whether GPS autoproteolysis is functioning

as a gatekeeping step in the biosynthesis and maturation of aGPCRs. One solution

to this puzzle may be offered by the observation that several potentially

GPS-disabling mutations rather lead to reduced stability and unfolding of the

GAIN domain and consequently do not traffic properly to the cell membrane.

Further, GPS cleavage appears to be dependent on cell context and other posttrans-

lational modifiers such as glycosylation [17, 20]. Therefore, recombinant expres-

sion of aGPCRs in heterologous cell lines—the classical test system utilized for

cleavage assays—may not provide the necessary cofactors or conditions that are

required for efficient GAIN proteolysis.

2.2 Terminating Adhesion

An obvious role for the autoproteolytic cleavage of aGPCRs is one that has

remained unexplored thus far. Movements during proliferation, migration, polarity

establishment, but also postmitotic motion of cells or their context impose consid-

erable forces on cells, which are counteracted by adhesion molecules such as

cadherins, laminins, or integrins [57].

In this vein, aGPCRs possess an extensive repertoire of adhesion domains that

are located in the ectodomain of most of the receptor homologs (see also [23]).

aGPCRs are exposed to and likely engage in binding events with adhesive partner

molecules that are affixed either within the extracellular matrix lattice or anchored

on opposite cell surfaces [25]. Thus, autoproteolytic cleavage of aGPCRs may

determine a threshold for forces transmitted onto the receptor expressing cells,

above which the NTF and CTF are separated and relieved of their adhesive

interaction. Such a role was suggested for other surface-mounted molecules such

as mucins (see above), which line the surface of mucous epithelia. By means of an

autocatalytically active SEA domain, potentially damaging shear forces that endan-

ger the epithelial barrier are limited to the energy that is necessary to split the two

non-covalently bound cleavage fragments of mucins [35].

2.3 Triggering Metabotropic Signaling

With the advent of molecular models on the activation mechanism of aGPCRs, and

their suspected role as mechanoreceptors, receptor autoproteolysis receives increas-

ing attention as a potentially crucial component in these processes.

As discussed in detail in [58, 59], several aGPCRs possess a tethered agonist that

is an integral part of the receptor molecule. Structure-function studies of GPR56

implied that the NTF of an aGPCR exerts an inhibitory role on the metabotropic and

biological activity of its CTF. This conclusion was based on receptor variants that

either contained a shortened or no NTF at all, which displayed increased activation

of cellular behaviors [44] and downstream effectors [60], respectively. These

observations were explained by two models: either the NTF directly suppresses
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metabotropic activity of the CTF consistent with the function of a tethered inverse

agonist, or alternatively, the NTF counteracts the activity of a tethered agonist of

the CTF [61]. Both models account for the disinhibiting effects of NTF removal.

Studies on LAT-1 (see also [62]) provided evidence for the latter model. A panel of

LAT-1 receptor variants was scored for their capacity to rescue the penetrant

developmental lethality caused through removal of the lat-1 gene in C. elegans.
In the course of this study, it was noted that neither a receptor that lacks the 7TM

domain nor a full-length chimeric version containing a foreign GPS motif of the

GAIN domain was able to remedy the lethal effects of lat-1 deletion. However,

when both receptor variants were co-expressed, they complemented each other

intermolecularly to reestablish the full biological functionality of the wild-type

receptor. The conclusion drawn from this set of experiments suggested that the GPS

motif interacts with the 7TM domain in an agonistic fashion [54].

Further investigations unveiled the molecular underpinnings of this effect and

supplied further evidence for the model that aGPCR signaling can be activated

through a tethered agonist. The stalk region that links the GPS with the first TM

helix, a peptide of approximately 15–25 amino acids in length depending on

individual receptor homologs, comprises an agonistic activity that stimulates

metabotropic signaling of aGPCRs. When truncated receptor versions that lack

the NTF are expressed, the agonist (termed Stachel; German: sting, or alternatively

stalk) is exposed and conceivably interacts with the 7TM continuously leading to

high signaling activity as observed before. Receptor layouts that lack the entire

ECD (i.e., including the Stachel/stalk), however, are muted, but can be reactivated

by high amounts of soluble Stachel/stalk peptide indicating that the tethered agonist
is necessary and sufficient for receptor activation. This was shown first for GPR126

and GPR133 [52] and subsequently for additional receptors including GPR56 [63],

GPR64/ADGRG2 [64], GPR114/ADGRG5 [65], Latrophilin-1, and LAT-1 [66].

Interestingly, the agonistic property of the peptide appears to reside in its

N-terminal half [65], which also represents the last beta-sheet of the GAIN domain

that is severed through the autocatalytic event from the much larger rest of the fold.

In cleavage-competent receptor homologs, the Stachel/stalk therefore constitutes

the very beginning of the CTF, which also mediates the non-covalent lock between

NTF and CTF that results in the heterodimeric configuration in which aGPCRs are

found on the cell membrane [19].

How is exposure of the Stachel/stalk enacted under physiological conditions? As
the agonist is buried inside the GAIN domain, the simplest mode would see the NTF

removed through a combination of firm ligand engagement with the extracellular

adhesion domains through which mechanical force is transmitted onto the NTF that

pulls it off the CTF. This way, the Stachel/stalk sequence would become instantly

exposed. Corroboration of the interplay between mechanical challenge and trans-

membrane signal transduction has recently been found in EMR2/ADGRE2:

Boyden et al. identified two kindreds that displayed symptoms of severe vibratory

urticaria, a condition associated with degranulation of mast cells upon dermal

challenge with physical force. In this study, an autosomal-dominant missense

mutation in EMR2/ADGRE2 was shown to underlie these effects. In vitro
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experiments with mast cells transfected with the mutated receptor variant indicated

that removal of the NTF through vibratory shear stress was increased [67]. This is

consistent with model in which elevated exposure of the tethered agonist (Stachel/
stalk) triggers subsequent downstream signaling events and is further discussed in

[68]. Also for other protease-activated membrane receptor systems, e.g., the Notch-

DSL pathway (see below), similar mechanisms, executed through proteolysis by an

exogenous protease, were proposed [69].

In this context, GAIN autoproteolysis would be an essential precondition for the

liberation of the tethered agonist upon mechanical stimulus encounter and a satis-

factory explanation for its evolutionary conservation. However, also non-cleavable

aGPCRs appear to possess agonistic activity in the Stachel/stalk peptide and are

sensitive to mechanical stimulation, at least in vitro, as recently shown for GPR114

[65]. To complicate matters, recent studies indicate that aGPCR engage in Stachel-
independent metabotropic (CTF-dependent) signaling [70], which is discussed in

detail in [59].

Currently, there is no obvious explanation for how the encounter between the

agonist and the 7TM may be facilitated assuming that the available GAIN domain

structures are representing the physiological conformation of the fold (see also

[58, 71]). Alternatively, there exist steric layouts of the GAIN domain that allow

access of the Stachel/stalk to its cognate 7TM interface even if the agonist is an

integral part of a contiguous polypeptide chain rather than released through the

autoproteolytic cleavage. Such conformations are subject to future investigations

and will help answering the question for the role of aGPCR autoproteolysis.

2.4 Liberation of NTF for Cell-Non-autonomous Effects

An interesting addition to the cell-autonomous information fed into the Notch-

expressing cell, the Notch-DSL interactions also appear to drive cell-non-autono-

mous events in the ligand-expressing cells. Also this feature of the Notch pathway

may compare to properties of several aGPCR homologs and their capacity to not

only act as signal sensors but also senders of information. A well-studied example is

the effect of the N-terminal fragment (NTF) of Gpr126/ADGRG6 during mouse

and zebra fish heart development [72, 73]. Gpr126 is expressed by endocardial cells

but not cardiomyocytes and is essential for cardiac mitochondrial function and

trabeculation of the heart. Genetic structure-function studies have indicated that the

C-terminal fragment of Gpr126, which contains the metabotropic signaling unit of

the aGPCR [52], is dispensable for these effects while they critically depend on the

NTF of Gpr126. Interestingly, this requirement is shared by endocardial cells and

cardiomyocytes, of which the latter do not express the receptor molecule.

Immunolocalization studies further detailed that Gpr126 may work in a paracrine

mode to exert its function on cardiomyocytes, possibly by shedding its NTF and

thereby governing the development of these cells in a cell-non-autonomous

fashion [72].
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2.4.1 Split Personality Hypothesis
While the NTF and CTF of most aGPCRs are associated non-covalently, it was

found that the two fragments could also be expressed separately on the cell surface

as independent entities in some aGPCRs such as Latrophilin-1 and EMR2/

ADGRE2 [56, 74, 75]. The so-called split personality hypothesis was coined to

reflect the fact that the NTF remains free even though the CTF is pulled down

exhaustively by immunoprecipitation [56, 76]. Furthermore, expression of the

CTF-truncated recombinant Latrophilin-1 was found to remain tethered on the

cell membrane. Most interestingly, the NTF could be efficiently removed from

the membrane without solubilizing any CTF when cells were treated with

perfluorooctanoic acid, a weak detergent that does not disrupt the lipid bilayer.

These results strongly suggest that some NTF is self-anchored on the membrane

independently of the CTF.

Indeed, subsequent studies showed that membrane localization of the two

fragments does not completely overlap and the fragments could even be

internalized independently [56]. Further, it is possible to detect ligand-induced

interaction of individual NTF and CTF from the same receptor molecule fused

with different tags (so-called homogeneric heterodimers), or even from two distinct

aGPCRs (heterogeneric heterodimers; e.g., NTFLatrophilin-1::CTFGPR56 or NTFEMR4

::CTFEMR2) [56, 74, 75]. For EMR2, it was shown that the NTF and CTF were

differentially distributed in lipid raft microdomains and ligation of the NTF by

EMR2-specific monoclonal antibodies induced the translocation and interaction of

NTF with CTF to the lipid rafts for receptor activation and signaling [74]. Consis-

tent with these findings, GPS proteolysis of aGPCRs could possibly create diverse

functional receptor complexes by cross association of independent NTFs and CTFs

of different aGPCRs.

Several possibilities exist as to how such molecular cross-chimerization may

come about. Receptor fragments may either recombine after GAIN cleavage at the

GPS. For this scenario GPS cleavage is absolutely necessary. Alternatively,

aGPCRs may form heterodimers at the level of the 7TM domain, ECD, or ICD

that may lead to crosswise pulldown results interpreted as heterogeneric

heterodimer formation. Only in one study thus far, these possibilities were tested

by the use of GPS cleavage-incompetent receptor forms, which still showed

co-immunoprecipitation [77]. The authors thus concluded that homo- and

heterogeneric cross talk of aGPCRs is likely the result of receptor oligomerization

that does not involve NTF-CTF re-pairing at the GPS, but rather the lateral

interaction of several aGPCR molecules.

Future investigations will need to further define the properties of GPS proteoly-

sis for separate fates and biological activities of aGPCR fragments.
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3 Similarities and Differences to Other Proteolysis-
Dependent Signaling Pathways

aGPCRs are by far not the only group of biomolecules whose actions are controlled

through proteolytic cleavage (Fig. 3, Table 1). Here, we only concentrate on those

that are governed by the proteolytic processing of surface receptors. However, we

note that also a wealth of other biological signals depend on the proteolytic

activation of precursor states of intracellular or secreted substrates. This includes

the shedding of N-terminal signal peptides through signal peptide peptidases or the

functionalization of prohormones and proenzymes into active molecule species,

such as proinsulin in pancreatic β cells or serine proteases in the gastrointestinal

system, respectively.
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GAIN domain
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Fig. 3 Molecular pathways controlled though proteolytic processing. aGPCR processing through

self-cleavage and cleavage by proteases is implicated in several biological properties of these

receptors including critical steps in their signaling cascade. In this respect, aGPCRs may share

signaling principles with other receptor systems that rely on proteolysis to trigger and/or transduce

extracellular events into intracellular information. These encompass, among others, the protease-

activated receptor group of GPCRs, polycystin-1/PKDREJ, Notch, and ephrin receptor families of

cell-surface receptors
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3.1 Protease-Activated Receptors (PARs)

Apart from aGPCRs, there are also other members of the GPCR superfamily that

require cleavage for their biological activity, e.g., for the initiation of their signaling

cascade. Thus far, four protease-activated receptors have been identified, PAR1–4

[78], each following a canonical activation principle. PAR1 is considered the

prototype receptor of the family. It is activated by the serine protease thrombin, a

key regulator of platelet aggregation, endothelial cell activation, and further vascu-

lar effects [79–81].

For activation of human PAR1, thrombin cleaves the ectodomain of the receptor

at a specific recognition site (LDPR#S) that is located at position 41 of the receptor
molecule [82]. The resulting new N-terminus contains a tethered agonist that

becomes unmasked upon the proteolytic event (Fig. 3, Table 1). The agonist

physically interacts with the 7TM domain of PAR1 and activates its signaling

cascade. Furthermore, synthetic peptides comprising the first six residues of the

unmasked tethered agonist are capable of activating PAR1, even without prior

receptor cleavage [82]. Additionally, genetic exchange of the cleavage site, e.g.,

to a trypsin cleavage site, resulted in receptor activation through trypsin under

heterologous expression conditions [83, 84], confirming the hypothesis that the role

of thrombin comprises the exposure of the receptor’s tethered agonist [85, 86].

An activation mechanism which shares similarities with the proteolytic activa-

tion of PAR1 has recently been unraveled for GPR126, GPR133 [52], and further

aGPCRs [63–65] (see above). However, several differences to PAR activation have

to be considered: while PAR1 processing through the exogenous thrombin protease

directly leads to the exposure of its tethered ligand, GAIN domain-mediated GPS

cleavage of aGPCRs alone may not be sufficient to unmask the Stachel/stalk agonist
of selected aGPCRs as the cleavage fragments remain attached to each other.

Further structural changes in their extracellular domain, e.g., through ligand bind-

ing to the adhesion domains within the receptor ectodomain similar to the situation

of the Notch receptor, and/or mechanical removal of the NTF may be required for

Stachel/stalk exposure and aGPCR activation [87–89].

However, studying properties of PAR receptors may reveal additional parallels

to the signaling paradigm(s) utilized by aGPCRs. For example, rapid

phosphorylation-dependent internalization of activated PAR molecules and

subsequent lysosomal degradation terminate PAR1 signaling [90, 91]. At least

one aGPCR study suggests that ligand contact and mechanical challenge of CD97

trigger removal and degradation of the receptor’s CTF, thereby providing means to

quench signaling through aGPCRs [87].

3.2 Notch

Developmental signals governed through the activation of the Notch receptor are

arguably the best researched and understood functions that result from proteolytic

processing of a receptor molecule. The Notch receptor consists of the single-pass
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transmembrane protein and contains a species-specific array of up to 36 epidermal

growth factor-like (EGF) repeats strung along the length of its extensive

ectodomain. Through the ectodomain, the receptor interacts with DSL ligands

(Delta, Serrate/Jagged, LAG-2), which themselves are large type I transmembrane

molecules mounted on neighboring cell surfaces to the Notch-bearing cell

[114, 115], thereby resembling the interaction scenario of several aGPCRs and

their cellular ligands, e.g., CD97 with CD55 [116] or Latrophilins with FLRTs,

teneurins, and neurexins [117–119].

An important consequence imposed by the positional Notch receptor-ligand

configuration is the restriction of signaling events to cellular neighbors [120],

which may also figure in the physiological roles of aGPCRs. This restriction is

critical for the developmental switches governed by the Notch pathway, as it

regulates binary cell fate decisions during embryogenesis, organogenesis, and cell

differentiation, and many examples across the tree of metazoan life bear witness to

the generality of this concept [104, 121]. In the classical paradigm of the Notch

receptor-DSL ligand interplay, two daughter cells deriving from a precursor blas-

tomere inherit equal amounts of both Notch and DSL. Engagement of Notch and

ligand at the cell contact faces initiates an iteratively looping feedback cycle, which

culminates in downregulation of the receptor in only one of the two cells. In the

‘winner cell’, the intracellular actions of Notch repress a proneural gene battery and

drive it into the epidermal cell lineage. Conversely, the cell that has lost Notch on

its surface becomes a neuronal precursor cell [122].

Intriguingly, the activation of the Notch receptor molecule is the consequence of

a cascade of at least four cleavage events that sequentially process the receptor

molecule along its N!C axis (Fig. 3, Table 1). First, after biosynthesis and en route

to the cell surface, the receptor is cleaved by a furin-like convertase at the S1

cleavage site severing most of the receptor’s ectodomain including the ligand-

binding EGF repeats from a fragment holding the juxtamembrane, transmembrane,

and intracellular receptor portion. S1 cleavage, however, does not result in physical

separation of the cleavage fragments as they form a heterodimer held together

through non-covalent interactions [123, 124], resembling the situation of aGPCRs

that have undergone GAIN autoproteolysis but appear as heterodimers at the

plasma membrane [4, 125].

The second proteolytic step occurs at the S2 site, which is positioned C-terminal

to the S1 site just above the transmembrane helix. Before activation, the S2 site is

protected by an arrangement of three LIN-12/Notch (LNR) repeats that are grouped

around the cleavage site blocking access for the cognate S2 metalloproteases

Kuzbanian and TACE/ADAM10 [126, 127]. When Notch engages with its DSL

ligand, DSL endocytosis is thought to generate mechanical forces pulling at the

receptor molecule, which eventually leads to conformational unwinding of the LNR

repeats and exposure of the S2 site and its cleavage [128, 129]. While S1 cleavage is

dispensable for Notch function [130], S2 cleavage appears as the gatekeeping step

in Notch activation rendering the pathway a developmental command control

system that may be triggered by mechanical input and may thus share similarities

with the role of aGPCRs in development.
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After S2 proteolysis, the remaining transmembrane-intracellular fragment of

the Notch receptor [Notch extracellular truncated (NEXT)] undergoes further

regulated intramembrane cleavage (RIP) catalyzed by the γ-secretase complex.

This large multi-protein enzyme cleaves the NEXT intermediate at two further

sites inside the membrane (S3 and S4 sites) [126, 127, 131, 132]. Ultimately, S3/S4

proteolysis results in the release of the Notch intracellular domain (NICD), which

heteromerizes with DNA-binding and transcriptional activation partners and travels

into the nucleus, where the complex controls the expression of target genes [133–

136].

3.3 Ephrins

Apart from Notch, proteolysis through ADAM10 assumes a central position in the

processing of a number of other neuronal proteins like APP, N-cadherin,

neuroligins, or ephrins [96, 106, 108, 110]. Among those, the proteolytic activation

and physiological relevance of the signaling mode of ephrin-A2 are exem-

plary (Fig. 3, Table 1).

Ephrin-A2 is a GPI-anchored molecule that is cleaved by ADAM10 upon

binding its endogenous receptor EphA3. The binding and cleavage event conse-

quently disrupts the cell-cell contact mediated through the Eph/ephrin interaction

[108]. Upon the formation of the ligand-receptor complex, the molecular recogni-

tion motif in ephrin-A2 is rendered accessible for ADAM10, which then associates

with this complex and cleaves ephrin-A2 in a trans mode, as protease and substrate

are expressed in different cells [137, 138]. It appears that this mechanism ensures

the exclusive cleavage of receptor-bound ligands [137]. Following the proteolytic

rupture of the intercellular connection, the Eph/ephrin complex is rapidly

internalized into the receptor expressing cell [138], which has been shown for

ephrin-A5, a related member of the ephrin family [139]. Blocking the Eph/ephrin

complex binding site of ADAM10 using specific monoclonal antibodies resulted in

impaired internalization and EphA3-mediated cell function, suggesting a physio-

logical role for the cleavage [140].

Ephrins and their Eph receptors are generally involved in the guidance of cell

migration and neural development, tissue separation, and synaptic plasticity

[139, 141], but also in extraneuronal processes including vascular development,

epithelial cell response, and inflammation [142–144]. One particular physiological

function of ephrin-A2 is the control of axon guidance [108] and involves proteoly-

sis through ADAM10. Migrating EphA3-presenting axons come in contact with

cells expressing ephrin-A2. Upon this encounter, the EphA3-positive neurites

are actively repelled by the proteolytic disruption of the Eph/ephrin connection

and thereby lead to axon withdrawal and precise spatio-mechanical control of

neurogenesis [108, 145]. Inside the cell, regulation of this signal is mainly

communicated through the intrinsic tyrosine kinase activity of ephrin receptors.

Phosphorylation-dependent activation of EphA3 triggers a conformational change

shifting the kinase domain away from the plasma membrane into its active form
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[146, 147], where it no longer obstructs the alignment with ADAM10 and therefore

allows ephrin shedding [146, 148]. Accordingly, EphA3 mutants carrying a consti-

tutively released kinase domain showed increased ephrin cleavage by ADAM10,

even when kinase function was disabled [146]. Thus, tyrosine kinase activity of

ephrin receptors is an intracellularly regulated means to switch between cell-cell

repulsion (high activity) and cell-cell adhesion (low activity) [146, 148, 149].

This binary signaling of Eph receptors may bear functional and cell biological

similarities to aGPCRs. Their variety of extracellular adhesion motifs are

predestined for intercellular cell-cell interactions like those observed for

Eph/ephrin, although the majority of aGPCRs are still orphaned without known

ligands or intracellular interactors [1]. aGPCR-ligand complexes could conceivably

be shed involving an exogenous protease (see discussion about furin-mediated

cleavages of individual aGPCR homologs above). Equally possible, mechanical

force may solely govern receptor fragment (NTF-CTF) separation at the breakpoint

originating from receptor autoproteolysis at the GPS. This way, aGPCR-expressing

cells may be able to switch from an adhesion to signaling state.

3.4 Polycystins

PKD1 and PKD2 are genes encoding polycystins, which are multitransmembrane

proteins with a large amino-terminal extracellular domain [150]. PKD mutations

have been demonstrated to cause one of the most common genetic diseases world-

wide, the autosomal-dominant polycystic kidney disease (ADPKD) [151], which is

characterized by the formation of multiple fluid-filled cysts that lead to renal failure

in patients [152]. Loss-of-function mutations in polycystin-1 (PKD1) are responsi-
ble for a vast majority of ADPKD cases with physiological functions of PKD1
found in cell adhesion and cell junction formation [153, 154]. Consistent with these

findings, polycystin-1 appears involved in mechanical coupling between cells and

in the regulation of tubular lumen diameter along the nephron [155].

Interestingly, polycystin-1 shares several structural features with

aGPCRs (Fig. 3). They possess a multi-pass transmembrane domain (with

11 instead of 7 helices), an extended ectodomain with arrays of PKD motifs, and

most notably a GAIN domain [19]. Similar to aGPCRs, polycystin-1 undergoes

autoproteolysis resulting in the generation of an NTF and CTF [17], which remain

non-covalently attached after cleavage. The physiological role of the polycystin-1

GPS cleavage is unknown. However, cleavage-deficient mutants exhibit impaired

function in vitro [17] and in vivo [18]. A PKD1 GPS proteolysis-deficient mouse

mutant shows abnormal renal development after the first days of postnatal life

apparent in reduced size and weight, as well as grossly enlarged cystic kidneys.

Furthermore, the mutation is lethal within 6 weeks after birth presumably due to

renal insufficiency [18]. This is only partly compatible with defects displayed by

PKD1–/– mice, which show severe embryonic phenotypes and die already a few

hours after birth [156]. Therefore, it was concluded that GPS cleavage of

polycystin-1 is required for postnatal renal maturation, while it is not essential for
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embryonic nephrogenesis [18]. This is supported by the fact that cleaved and

uncleaved polycystin-1 can coexist under physiological conditions [155]. Interest-

ingly, polycystin-1 is also substrate to proteolytic events in addition to GAIN

domain autoproteolysis, as it, too, is cleaved by the γ-secretase complex, resem-

bling S3 and S4 proteolyses of the Notch receptor [157, 158].

4 Conclusions

aGPCRs are by far not the only group of biomolecules whose actions are controlled

through proteolytic cleavage. Here, we only concentrated on those that are

governed by the classical proteases and autoproteolytic events. As shown here,

autoproteolysis and proteolytic cleavage seem neither mutually exclusive nor are

their functional implications in aGPCRs sufficiently understood. Considering the

tremendous number of surface receptors controlled through proteolysis, and the

requirements for their function, there is no doubt that elucidation of the physiology

of aGPCRs requires further investigation of their proteolytic properties. This should

include a better understanding how GAIN domain-mediated cleavage is involved in

receptor signaling and resolve the question if and how it may be modulated, e.g.,

through allosteric mechanisms. Further interest should be directed toward the study

of other aGPCR domains that entertain non-GAIN domain autoproteolytic steps

and the role of other proteases in the processing of the receptor molecule and pin

down their physiological roles in receptor trafficking, cell adhesion, metabotropic,

and non-cell-autonomous signaling. The structural and physiological properties of

other surface molecule systems including the PAR, Notch, ephrin, or polycystin

pathways should be considered as examples of how proteolytic processing can

shape the function of receptor modules. The extensive body of work accumulated

on their biological significance can instruct new experimental avenues and working

models that should be explored in the quest to elucidate the interplay between the

proteolytic processing of aGPCRs and their diverse signaling profiles.
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