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% Check for updates The GPCR autoproteolysis inducing (GAIN) domain is an ancient protein fold

ubiquitous in adhesion G protein-coupled receptors (aGPCR). It contains a
tethered agonist necessary and sufficient for receptor activation. The GAIN
domain is a hotspot for pathological mutations. However, the low primary
sequence conservation of GAIN domains has thus far hindered the knowledge
transfer across different GAIN domains in human receptors as well as species
orthologs. Here, we present a scheme for generic residue numbering of GAIN
domains, based on structural alignments of over 14,000 modeled GAIN
domain structures. This scheme is implemented in the GPCR database
(GPCRdb) and elucidates the domain topology across different aGPCRs and
their homologs in a large panel of species. We identify conservation hotspots
and statistically cancer-enriched positions in human aGPCRs and show the
transferability of positional and structural information between GAIN domain
homologs. The GAIN-GRN scheme provides a robust strategy to allocate
structural homologies at the primary and secondary levels also to GAIN
domains of polycystic kidney disease 1/PKD1-like proteins, which now renders
positions in both GAIN domain types comparable to one another. In summary,
our work enables researchers to generate hypothesis and rationalize experi-
ments related to GAIN domain function and pathology.

Adhesion/class B2 G protein-coupled receptors (aGPCRs), the
second-largest class of GPCRs, have garnered substantial research
and medical interest due to their involvement in neural develop-
ment, hereditary disorders, and cancers among others'*. aGPCRs
are classed into nine subfamilies® and are characterized by a very
large extracellular region, containing the conserved GPCR autop-
roteolysis inducing (GAIN) domain. The GAIN domain is positioned
directly N-terminal of the seven-transmembrane domain (7TM,

Fig. 1a), which transduces an extracellular signal to intracellular
effector proteins®.

The GAIN domain serves several functions. First, at its GPCR
proteolysis site (GPS) an autoproteolytic cleavage event occurs adja-
cent to the 7TM domain, which yields a bipartite structure stabilized by
non-covalent interactions’ ™. The two resulting elements, called
N-terminal and C-terminal fragments (NTF/CTF), remain attached to
one another even at the cell surface. Second, the GAIN domain
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Fig. 1| The variable topology of the G protein-coupled receptor (GPCR)
autoproteolysis inducing (GAIN) domain. a adhesion GPCR topology with the
N-terminal extracellular region composed of various extracellular domains (ECDs)
and the GAIN domain directly N-terminal of the seven-transmembrane domain
(TM). The GAIN domain is comprised of subdomains A and B, with the tethered
agonist (TA) as the most C-terminal B-strand. The GAIN domain is frequently pre-
ceded by a hormone receptor motif (HRM) domain of unknown function. b the

GAIN domain is composed of two subdomains, with subdomain A (blue) comprised
of 2-6 a-helices with conservation decreasing toward the N-terminal boundary. The
B-sandwich subdomain B (orange) is composed of 13-14 (3-strands with a conserved
autoproteolytic cleavage triad (GPS) of sequence HL | T/S (red triangle: cleavage
site), followed by the tethered agonist (TA, yellow). ¢ the GAIN domain of rat
ADGRLI (PDB ID: 4DLQ?’) shows all hallmarks of the GAIN domain.

contains a tethered agonist element (TA, Stachel, Fig. 1b), which cor-
responds to the N-terminus of the CTF that arises through GAIN
domain cleavage" ™. The TA activates the receptor upon dissociation
of the NTF/CTF complex''**™, the biophysical intricacies of which are
yet to be uncovered®". Third, several aGPCRs act as metabotropic
mechanosensors®°?*, where the GAIN domain is proposed to serve as a
molecular integrator of mechanical forces through its partial unfolding
or eventual dissociation of the NTF/CTF complex upon force
stimulation®’.

X-ray and cryo-EM structures provided the first insights into GAIN
domain structures and TA-7TM complexes®'%°=¢ The available set of
experimentally determined GAIN domain structures indicates a com-
mon architecture with two, structurally variable, subdomains: The more
variable subdomain A is comprised of up to six helices, and the more
sequence-conserved subdomain B adopts a 3-sandwich with the TA as
its most C-terminal strand (Fig. 1b, ¢)*'°"***"¥_ The low sequence identity
of GAIN domains and variable number of constituting segments, how-
ever, led to inadequate annotations of the GAIN domain in protein
databases, hampering inter-species comparison of GAIN domains and
limiting a holistic understanding of GAIN domain function.

Generic residue numbers (GRNs) provide a common index to
corresponding amino acids across the different members of a protein
family. GRNs have a great utility as they enable comparison and
inference of a multitude of residue data spanning pharmacology (e.g.,
in vitro mutations), structural biology (e.g., ligand, domain, or protein
interactions), and genetics (natural variants). For GPCRs, the first GRN
scheme was that of Ballesteros-Weinstein and assigned residue indices
in the 7TM domains of class A GPCRs*®. A number, 50, is given to the
most conserved residue in each of the seven helices that serve as a
reference when assigning consecutive numbers of upstream and
downstream. This system has since been adapted to other GPCR
classes”, including the Wootten numbering scheme for the class Bl
(Secretin) and B2 (Adhesion) receptor families*’.

As GPCR structures became available, these sequence-based
schemes were found to suffer from non-generic numbers when some
receptors have helix bulges or constrictions causing a one-position
residue gap in structural alignment and offset of following residues in
sequence alignment®*, To mitigate this numbering issue, the GPCR
database (GPCRdb) provided structure-based GRN schemes for each
GPCR class wherein structural residue gaps are also present as single
gaps in the sequence alignment®’. The GPCRdb schemes also added helix
8 (H8) and structurally conserved stretches of the first extra- and intra-
cellular loops. Highly flexible and variable protein regions such as

loops remain unannotated in currently established schemes. GRNs have
seen wide adoption among researchers, becoming a frequently used tool
in communicating GPCR research. Other GRN schemes like the kinase
-ligand interaction fingerprints and structure database (KLIFS)**™*, the
common G protein Ga numbering (CGN)*, or the common arrestin
numbering (CAN)* serve in mapping functional protein networks or
drug-development purposes in additional protein families.

Here, we introduce a GRN scheme for aGPCR GAIN domains based
on the superposition of more than 14,000 structural GAIN domain
models generated with ColabFold/AlphaFold 2**%, We highlight
structural variability and common features of all aGPCR GAIN domains
and enable data transfer by means of common GRN labels by finding
statistically cancer-enriched positions in humans. The GAIN-GRN was
implemented into the GPCRdb**** to allow for intuitive use in a
highly accessible and widely adapted resource, as well as for pro-
grammatic access to the data. In addition, we provide a notebook in the
code repository (https://github.com/FloSeu/GAIN-GRN) enabling the
ad-hoc indexing of any GAIN-domain containing protein. We expect
that these will inspire future studies aiming to elucidate the molecular
mechanism of GAIN domains in the signal transduction and physiolo-
gical functions of aGPCRs, and will aid analyses on how structural
anomalies contribute to aGPCR dysfunction under disease conditions.

Results

The heterogeneity of the GAIN domain necessitates structure-
based residue numbering

A comprehensive analysis of GAIN domains by means of multiple
sequence alignments fails due to their low sequence identity and
variable number of segments (a-helices and B-strands)’'**>*¢, Thus, to
enable a comprehensive description of the GAIN domain, we opted for
a structure-based approach, for which we generated a set of 14,435
GAIN domain models encompassing orthologs of the 33 mammalian
aGPCR and 916 GAIN domains not matched to any orthologs with
ColabFold/AlphaFold 2*"%, In order to assess the composition of both
GAIN subdomains, we used structural alignments with GESAMT* for
indexing segments. Using this approach, the segment position in space
determines its index instead of its sequence-based order, allowing the
assignment of equivalent positions for GRN indexing in the context of
variable domain composition.

Based on the complete set of GAIN domain models, we asserted that
subdomains A and B are composed of two to six helices and
12-14 strands, respectively, which we indexed using the identifiers H1-6
and S1-14 (Fig. 2a). Subdomain B exhibits generally high segment
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Fig. 2 | GAIN domain helix and strand architecture of human adhesion G
protein-coupled receptors (aGPCRs) and conservation across orthologs.

a Example chimeric GAIN domain structure showing all six helices, 14 strands, and
the GPCR proteolytic site (GPS) on its topology, a red asterisk marks the autop-
roteolytic cleavage site N-terminal of the tethered agonist (S14). b each row
represents all orthologs in the UniProtKB database that have a GAIN domain for
each receptor, where individual elements are highlighted by occupancy (blue:
subdomain A helices, orange: subdomain B strands), higher color intensity repre-
sents a higher conservation of the element within the group of orthologs. White
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circles denote elements that are not present in the corresponding human aGPCR
GAIN domain (ADGRAL1 without GAIN; ADGRE4 is a pseudogene in humans). Other
receptors (red label) are aGPCRs without a receptor ortholog in humans. A set of
2872 polycystic kidney disease-type proteins (PKD, green label) have GAIN
domains, which were matched against the set of aGPCR templates, matching well
with an additional beta-sandwich subdomain between extended S9 and S10.

c residue conservation for residues indexed with the GAIN-GRN for subdomain A
(shades of blue) and subdomain B (shades of orange), with 14435 GAIN domains as
the underlying number of GAIN domains. Unindexed residues are colored green.

conservation, with only strand 4 specific to subfamilies A and G (Fig. 2b).
The composition of subdomain A is more variable. While the A, B, C, F,
and L subfamilies all have six helices, the D and G subfamilies show
heterogeneity ranging from two to six helices (Fig. 2b). Structures
reflecting subdomain A variability are for example the rat ADGRL1 with a
six-helix bundle (Fig. 1c)°, and the human ADGRGI1 GAIN domain with
only Helix 4 and 6°, the two most conserved helices in the dataset.
When looking at individual residue positions (to which GRN labels
are assigned, Fig. 2¢), notably the center regions of helix 3, 4, and 6 are
more frequently occupied (occupancy referring to the fraction of

models containing a segment in the dataset) than the extreme posi-
tions, highlighting varying helix lengths in the model dataset, with
especially the L subfamily exhibiting longer helices. Aside from the
residues in the less conserved strands 4 and 7, there is high occupancy
in subdomain B. The unindexed GAIN domain loops connecting the
structured elements show very different lengths, frequently exceeding
50 residues (Supplementary Fig. 6). Notably, a total of 84 homologs of
ADGRALI in 47 species have a GAIN domain, which is not found in
human ADGRAI’, whereas 78 GAIN domains were identified for
ADGRE4, which is a pseudogene in human (Supplementary Table 1).
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Fig. 3 | Generic residue numbering denotes corresponding residues across
receptors. Generic residue numbers (GRNs) are equivalent residues in structure
and sequence across receptors, enabling comparisons of, e.g., mutations**>%,
sequence conservation® structural contacts, and ligand interactions’>**. a A GRN is
composed of the segment identifier and the numeric residue index. The structural
alignment of the GAIN helix 6 segment of nine human adhesion G protein-coupled

receptors indicates the GRN at the respective aligned residue Ca (spheres).

b sequence alignment of the nine receptors with the receptor subfamily indicated
in bold in front of the receptor name. Sequence alignment is based on structural
alignment, with the H6.50 GRN denoting the most conserved residue in the seg-
ment (bold). All other segment residues are indexed relative to the .50 position.
c residue table of aligned segments colored by chemical properties.

Generic residue numbering denotes corresponding GAIN
domain amino acids across receptors

Based on the GAIN-GRN indexing of all 14,435 structural models, we
created comprehensive alignments of the GAIN domain in structure
and in sequence (Supplementary Fig. 1). These provide a novel utility
to map data across all adhesion-GPCRs and cross-map sequence-
position specific data between homologs. A schematic of the GRN
assignment process is outlined in Fig. 3. Each GRN consists of the
segment identifier (e. g. Helix 6 =“H6”) and the respective index
relative to the most conserved residue in the segment, separated by a

dot (e.g., “H6.50”). In this example, representative GAIN domains
from each aGPCR subfamily are structurally aligned, with the Ca-
atoms corresponding to GRN positions (Fig. 3a). Using the backbone
alignment positions as the basis for a sequence alignment, the most
conserved position is identified here as the acidic E/D and gets
assigned the “center” .50 index (Fig. 3b). A residue table of the
aligned segments highlights variation in segment lengths and reveals
positions with similar physicochemical properties, e.g., the H6.50 as
acidic, H6.45, H6.46 and H6.49 as aliphatic, despite low sequence
identity (Fig. 3c).
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GPCRdb resources aiding use of GAIN GRNs

As part of the GPCRdb integration, we assigned the 6 helices (H1-6),
14 strands (S1-14), and 21 loops connecting segments (h1h2, h2h3,
h3h4, h4h5, h5h6, hésl, s1s2, s2s3, s3s4, s4s5, 556, 657, S7s8, s8s9,

s9s10, s10sll, slis12, s12s13, s13gps, gpssl4, sl4tml) to all Class B2
(Adhesion) sequences. In addition, the GPS motif has a separate
assigned segment from the conventional GPS.-2, GPS.-1, and GPS. +1
notation for the three residues directly preceding or following the
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Fig. 4 | GAIN-GRN data and tools available in the GPCR database, GPCRdb.

a Generic residue numbering tables show GRNs followed by receptor-specific
residue numbers and amino acids™. b Sequence alignments allow swift sequence
comparison across all GAIN segments (helices and strands) as well as conservation
(% identify and consensus sequence) and physicochemical properties (residue

1-2

polarity, size, helical propensity and z scales)*°. ¢ the snake plot of the GAIN domain
provides a simple 2D representation with the option of custom coloring®. d The
Sequence signature tool identifies structural determinants - uniquely conserved
residues - upon contrasting two sets of sequence alignments of receptors that have
and lack the given function, respectively*’.
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catalytic site. With the introduction of these segments, researchers can
apply the GPCRdb toolkit to the whole, or selected parts of the GAIN
domain (Fig. 4). We updated the snake plots of the Class B2 (Adhesion)
GPCRs to contain the segments of the GAIN domain (Fig. 4c). The
snake plots can be found on the Receptor page (https://gpcrdb.org/
protein/) with custom coloring options®’. Along with the already pro-
vided data, GAIN domain data is also accessible programmatically via
REST API, enabling seamless integration of GAIN-GRN into Python
workflows with, i.e., the mdciao package®.

Consensus contacts stabilizing the GAIN domain fold

Addressing GAIN domain positions via GRN enables mapping any GRN-
label-dependent information across aGPCR homologs. Corroborating
the analysis of tertiary structures, we exploit the GRN indexing to
consolidate pairwise residue-residue contacts - particular to each
structure - into unified consensus contacts. The entirety of GRN-label
pairs occurring over the complete dataset with a given frequency
yields the GAIN domain contactome, shown in Supplementary Fig. 7 as
aflareplot. This plot represents a contact matrix, individually resolving

a
Cancer enrichment
o
o
(&)
7]
D T9)
0 [Te}
[s2] (<o)
T I
c

GAIN domain mapping on ADGRLA1

Fig. 5 | Cancer Genome Atlas mutations mapped onto the GAIN domain via
Generic Reisdue Numbers show mutational hotspots. Enrichment scores were
calculated via a relation between the number of naturally occurring variants
(retrieved from Genome Aggregation Database (gnomAD), accessed on Jan 16™,
2023 from https://registry.opendata.aws/broad-gnomad)®. and cancer-associated
mutations (retrieved from The Cancer Genome Atlas (TCGA) Genomic Data Com-
mons, (GDC), portal.gdc.cancer.gov)”” at a GRN according to the formula from
Wright et al., 2019%. a The ten most cancer-enriched positions in humans, with the
S4 element excluded due to too low a number of mutations and variants. b The ten
most natural variant enriched positions, showing negative association with cancer,

consensus contacts at the residue level while highlighting contact
relationships between the different GAIN segments.

The importance of H6 as a “hub” connecting the subdomains A
and B is clearly visible with highly conserved contacts to primarily S6
and also S2, S8, S10, and S14. Furthermore, H4 partially tethers sub-
domains A and B via highly conserved contacts to S1 and S2. In Sup-
plementary Tables 2 and 3, the most frequent inter-domain and GPS
contacts are listed individually, respectively. In addition, we coarse-
grained the contactome into the GAIN segments (Supplementary
Fig. 8) reproducing the tethering structure of the segments regardless
of individual contacts, further highlighting H4 and Hé6 as the segments
mediating contacts between both GAIN subdomains.

A map of cancer-enriched mutations in the GAIN domain

The GAIN domain, present in 31 of 32 human aGPCRs, is a mutational
hotspot affected by various pathologies”**>*°. To find potential cancer-
enriched positions and differentiate them from variance-enriched
positions, we adopted the cancer-enrichment score from Wright et al.”’
for all 31 human aGPCR GAIN domains (Fig. 5a, b) indexed by the GAIN-
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analogous to the mutation enrichment score®” ¢ enriched positions mapped onto
the human ADGRD1 GAIN domain model (UniProt ID: Q6QNK2), with values above
0.1 of maximum intensity colored for cancer enriched (red sticks) and variant
enriched (lavender) positions. d a cluster of cancer-enriched positions shows the
most conserved residues of four strand segments (S7.50, S10.50, S11.50, and
S14.50) contacting each other. All positions are part of the ten most cancer-
enriched positions. e logo plots of residue conservation (fraction of total structures
with 1.0 meaning that the position is conserved in all 14,435 GAIN domains in the
dataset) for the enriched cluster show strong residue conservation for the VWWL
mOtif Composed Of v5750’ wSlO.SO[ WSll.SO[ LSM.SO.
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GRN. While generally, enriched positions of both types are distributed
throughout the GAIN domain (Fig. 5c), eight of the ten most cancer-
enriched GRN positions are found in subdomain B carrying the TA
(Fig. 5a and Supplementary Fig. 2).

We identify a “VWWL” motif consisting of four conserved top-ten
cancer-enriched residues S7.50, $10.50, S11.50 and S14.50. This buried
motif is located in the direct vicinity of the GPS cleavage site (Fig. 5d-e
and Supplementary Fig. 1), with mutations known to affect GAIN
domain autoproteolysis and TA function: the conserved leucine at the
S14.50 position (Supplementary Fig. 1) is a TA residue deeply buried
into the orthosteric binding site of the 7TM domain in active aGPCR-
7TM structures'®?°>*® and its mutation led to altered receptor
activity*>*%°, Moreover, the mutation of any tryptophane within the
“VWWL” motif causes loss of function in rat ADGRL1’.

With a comprehensive analysis of human aGPCR GAIN domains,
we find a total of 46 statistically cancer-enriched positions (Supple-
mentary Fig. 2). By using the GAIN-GRN, homologous cancer-enriched
residue positions can now be assigned to any GAIN domain and ana-
lyzed for their individual origin and consequence with the tools pro-
vided in the repository. This allows the transfer of positional
information between GAIN domains in different species, particularly
from humans to model organisms, such as D. melanogaster, C. elegans
or D. rerio®**, The functional analyses in these model systems can now
provide valuable insights into the molecular causes of cancer muta-
tions in humans in future studies.

To further highlight the potential of our approach to evaluate
position-specific information, we applied our code repository to con-
duct a more in-depth sequence and structural bioinformatics analysis
of the natural variants neighboring the VWWL motif. The side chains of
two natural variance-enriched S7.49 and S14.49 positions, neighboring
the cancer-enriched x.50 residues of the VWWL motif point away from
the cleavage site. At S7.49 a manifold of amino acid substitutions is
found in agreement with its unburied position. By contrast, at the
buried S14.49 position, we exclusively find substitutions to hydro-
phobic residues (Supplementary Fig. 9). Due to solvent exposure the
position S7.49 accordingly seems rather insensitive to sequence var-
iations, while at S14.49 variations to non-hydrophobic residues seem
not to be tolerated.

GAIN domains of PKD1/PKD1-like proteins possess an extended
topology

The only other protein family known to contain GAIN domains are PKD
(polycystic kidney disease)1/PKD1-like proteins (in short here PKDI1;
also referred to as polycystin-1[PC1])°. Mutations in PKD1 are respon-
sible for the majority of autosomal dominant kidney PKD, a devastat-
ing disorder that entails the development of cysts in the kidney and
other organs leading to their eventual failure®. PKD1 GAIN domains
display similar molecular properties as aGPCR GAIN domains with
autoproteolytic cleavage resulting in a bipartite NTF-CTF protein lay-
out after proteolysis®®. Enabling the comparison and transfer of
experimental and mutational knowledge between aGPCR and PKD1
GAIN folds is the basis for the understanding of similarities and dif-
ferences between the two, and can offer valuable insights into the cell
biological and physiological consequences of GAIN domain functions.
However, thus far such transfer has been obstructed by the lack of
clear homology assignments of primary and secondary structural
positions between aGPCR and PKD1 GAIN domains.

Here, we employed the GAIN-GRN scheme to allocate positional
labels in PKD1 GAIN domains and compare them to those of aGPCR
GAIN folds. Since no experimental structure of PKD1 GAIN domains is
available yet, we prepared 2738 structural models analogously to the
aGPCR dataset®®®%, We applied the GAIN-GRN scheme to the models,
which on average resulted in four subdomain A helices and twelve
subdomain B strands recognized by the GAIN-GRN method (Fig. 2b),
thus structural elements homologous to aGPCR GAIN domains.

Interestingly, we also observed differences to aGPCR GAIN domain
layouts as the PKD1 GAIN domains showed an additional B-sandwich
fold, which contains an extension of S10 and C-terminally elongated
TA. Finally, we also observed up to a total of eight subdomain A helices
with additional, unindexed helices (Supplementary Fig. 3).

In sum, the GAIN-GRN scheme provides a robust strategy to
allocate structural homologies at the primary and secondary levels also
to GAIN folds of PKD1 molecules, which now renders positions in both
GAIN domain types comparable to one another.

Discussion

The GAIN domain is an ancient extracellular protein domain of the
large adhesion GPCR family, involved in neural development, heredi-
tary disorders, and cancer' . Despite recent insights obtained from
high-resolution structures of GAIN domains in complex with the 7TM,
the GAIN domain function in autoproteolysis, mechanosensing, and
TA-dependent receptor activation is still poorly understood. To over-
come the limitations imposed by the structural heterogeneity of GAIN
domains in aGPCR homologs - the variable number of secondary
structure segments and overall low sequence identity - we developed
the GAIN-GRN as a generic residue numbering scheme for aGPCR GAIN
domains. We used spatial alignments of structural models, generating
multiple sequence alignments to define the reference residue position
as the most conserved residue in each segment®~°**, The GAIN-GRN is
based on GAIN domain models predicted by AlphaFold 2/Colabfold to
include most GAIN domains in proteins present in the Uniprot
database***. To aid users in employing GAIN GRNs for data analysis
and hypothesis generation, we implemented the GAIN-GRN in the
GPCRdb serving as an accessible and established resource (Fig. 4). We
also show that the GAIN-GRN is a robust tool to assign structure-
homologous residues across molecule families as we have retrieved
GRN also for PKD1 GAIN domains. Upcoming experimental structures
of GAIN domains may have constrictions or other unpredicted struc-
tural features that would require future refinement of the GAIN-GRN
algorithm, which would be implemented by a new set of structural
templates. Notably, the structure-based statistical approach of gen-
erating generic residue numbers may also be generalizable by making
appropriate adjustments to the source code as outlined in the pro-
vided code repository (https://github.com/FloSeu/GAIN-GRN).

Statistical evaluation of the dataset of aGPCR GAIN domains enables
us to assess their composition as well as the spatial and positional con-
servation of information as reflected by the GAIN contactome (Supple-
mentary Figs. 7, 8). The evolutionarily conserved two-subdomain
architecture of the GAIN domain is present in humans as well as dis-
tantly related organisms such as Trichoplax adhaerens™*°. Subdomain
B, containing the autoproteolytic cleavage site and the tethered agonist,
is structurally less variable consisting of 12-14 B-strands, in agreement
with its implied function in NTF-CTF association, force-dependent GAIN
domain separation and mechanosensing’??. Notably, our analysis
underlines the notion that the known “GPS motif” is not an individual
protein domain, as initially anticipated, but rather the C-terminal section
of subdomain B%*°. By contrast, subdomain A, shows high structural
heterogeneity with only two critically conserved helices (H4 and Hé,
Fig. 2), with their core regions forming an interface with and presumably
stabilizing subdomain B (Supplementary Figs. 7, 8). Despite structural
heterogeneity, our structure-based alignment reveals highly conserved
stretches of residues and segments with low overall sequence identity
but similar physicochemical properties (Supplementary Fig. 1), thus
corroborating the notion that structural conservation outweighs
sequence conservation”.

Creating structure-based alignments of larger protein sets with
representatives in humans enables us to structurally map benign and
malign mutations for testing in homologous positions of distantly
related proteins. For example, the mutations within the “VWWL” motif
(Fig. 5) close to the GPS may now be tested in any model system based
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on their GRN index. Analogously, we can now assess the location of
known pathological mutations: Avila-Zozaya et al. have investigated
cancer-related mutations in ADGRL3, with impacts on Gy3-signaling for
KS6IN"L, D798H%*7, S810L**!° and E811Q**'°, where the latter two
residues correspond to the interaction region of the GAIN domain with
the seven-transmembrane domain'**®, Two mutations responsible for
loss of surface expression in GPR56, causing bilateral frontoparietal
polymicrogyria (BFPP), are the highly conserved C346S%°* and
W349S5519%0 refs, 7,74,75 More generally, our approach promotes future
experiments focusing on the central role of GAIN domains in the
physiological functions of aGPCRs and PKD1 molecules and will aid
analyses of how structural anomalies contribute to their dysfunction
under disease conditions.

Methods

All computational pipelines were implemented in Python 3.9.16.
Packages used for data collection: colabfold 1.2.0, alphafold-colabfold
2.1.6, docker 5.0.3. Packages used for data analysis: stride, ccp4.8.0
with GESAMT 8.0, numpy 1.23.2, matplotlib 3.7.1, Jupyter 1.0.0, Ipy-
kernel 6.19.2, Logomaker 0.8, nglview 3.0.4, Scikit-learn 1.3.0, colab-
fold 1.2.0, pandas 1.5.3, MAFFT 7.490. Figures were created with The
PyMOL Molecular Graphics System, Version 2.2.5, Schroédinger, LLC.

Generation of the GAIN domain model dataset

Sequences were retrieved from the UniProtkKB database with two
queries for adhesion GPCR and CELSR, respectively, yielding 22,946
and 2179 sequences, respectively (Supplementary Fig. 5). Sequences
were filtered for a minimum length of 50 residues and the presence of a
“GPS” domain annotation in their domain records. The C-terminal
sequence boundary was read from the “GPS” Domain record, whereas
for the N-terminal boundary, sequence lengths exceeding 800 resi-
dues were truncated to include the GAIN domain boundary expected
at around 320-360 residues upstream of the C-terminal boundary,
resulting in 16,537 sequences. The structures of all processed
sequences containing potential GAIN domains were predicted with
ColabFold**® by using batches of 30 length-sorted sequences with a
pre-defined padding to account for sequence length differences per
batch Root mean square deviation (RMSD) values of GAIN domains
from a respective experimentally determined structure were generally
low, with PDB: 4DLQ, rat ADGRL1, RMSD 0.45 A; PDB: 4DLO, human
ADGRB1, RMSD 134 A; PDB: 5KVM, human ADGRG1, RMSD 0.77 A;
PDB: 6V55, danio rerio ADGRG6, RMSD 0.82 A; PDB: 8IKJ, human
ADGRES, RMSD 0.98 A; PDB 7QUS, human ADGRG3, RMSD 0.96 A),
and deemed sufficient to keep the modeled structures instead of the
experimental ones. A multiple sequence alignment was constructed
from an initial 15,957 successfully folded and non-doublet aGPCR/
CELSR sequences using MAFFT’® for localizing the GPS motif.

The secondary structure information of the resulting folded
structures was read out with STRIDE”” The data from the resulting files
was used to apply two criteria for a valid GAIN domain: The presence of
both the helical subdomain A and the -sandwich subdomain B as well
as the existence of the GPS or a homologously aligned sequence. The
filtered dataset consists of 14,435 valid GAIN domains (Supplementary
Fig. 5). The human dataset consists of 31 aGPCR GAIN domains.

GAIN domain detection

The presence of both subdomains was detected by using a numerical
transformation of the sequence, assigning a 1 to helical and -1 to -
strand residues. By using linear convolution, a signal was generated,
whose sign changes were detected as boundaries between helical and
B-strand protein segments. The presence of both subdomains was
confirmed by identifying the largest helical segment adjacent to a
C-terminal B-strand segment corresponding to the subdomain in each
respective structure. The signal decay N-terminal of subdomain A, by

the presence of non-helical residues, was used to determine the GAIN
domain boundary for each generated model. The column index of the
GPS.-1 residue (corresponding to leucine in the conserved HL|S/T
triad) was set as a reference for detecting the presence of a GPS motif
or homologous aligned sequence elements. Any structure showing a
residue at the corresponding column in the MSA was set as possessing
the GPS, therefore satisfying the second criterion.

Template model selection

Template candidates were extracted by selecting a random
400 structures of each subfamily GAIN domain model to account for
variance in the selection and optimize performance. The sub-selection
was used to generate a root-mean-square deviation (RMSD) matrix by
pairwise alignment applying GESAMT in the CCP4.8 package™’, in
pairwise alignment mode, on the respective subdomains. Since pair-
wise alignments form the basis of the segment identification process
and creation of the following MSA, only the pairwise mode of GESAMT
was used for code consistency. The matrix was clustered and sorted
using agglomerative clustering via the scikit-learn python package’,
and the lowest-RMSD model of the largest cluster was selected as a
candidate template. Candidate templates were checked against each
receptor sub-selection of the dataset via occupancy (fraction of
structures matching the template anchor) and distance (pairwise Ca-
Ca distance). Repeating the template selection and curating workflow
four times, matched receptors of low quality from the initial set were
removed, and additional templates were added and selected from
individual receptor selections. After accounting for all conflicts with
the alignment functionality in GPCRdb, coverage of all aGPCR protein
paralogs, and coverage of spatial orientation variance in individual
segments, manual adjustments were made in the form of including
strand 4 of subdomain A with 10% occupancy in the model dataset, and
an adjustment of the center position in helix 4 to account for the
variance in orientation in helix 4, sometimes overlapping with Helix 5.
The final set of templates consisted of 15 subdomain A and two sub-
domain B templates for the complete indexing. Segment center resi-
dues for each element were generated by pairwise aligning all GAIN
domains against each candidate template using GESAMT and collect-
ing all pairwise residue matches into a multiple sequence alignment,
finding the position of highest occupancy and residue identity.
Segment centers were validated and manually curated via 3-D, aligning
all candidate templates and verifying the identical position of the
anchor in space. The position of the H4 segment center was manually
adjusted to avoid ambiguities with the H5 residue center. The unique
orientation of the most N-terminal helix of ADGRDI1, ADGRE],
and ADGRF4 yielded three individual segment centers. Each receptor
GAIN was assigned a template per subdomain to be matched to
by default.

Segment overlap and ambiguity cases

For some cases of low-quality proteins, the SSE of the template and
GAIN were overlapping without a pairwise match of the template
anchor. In these cases, the match closest to the template anchor was
set as the reference position considering the offset (i.e., “S14.47” when
the residue is three residues N-terminal of the template S14.50) and
enumerated analogously from there.

Anchor ambiguity cases arose when two elements were detected
as one by STRIDE with two template center residues matched, however
the spatial orientation of two SSE was distinguishable. These cases
were handled by a hierarchical segment splitting routine assessing the
segment between both matched segment centers in decreasing
priority: the presence of a coiled residue, a residue with backbone
angles outside of five standard deviations of the element total dis-
tribution in the dataset, presence of proline or glycine and a manually
defined truncation element for common occurrences.
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Creating the template set

Templates are defined as consensus structural models used for
structural alignment of other GAIN domain models for segment
identification and indexing. Templates were defined separately for
GAIN subdomains A and B. The definition of the template set consisted
of three steps: Identifying candidate template structures, finding their
center positions, and assessing their coverage and quality for inte-
gration into the final template set (Supplementary Fig. 4). Templates
have the center residues of each segment already assigned based on
structural alignments of all template structures (Fig. 3b).

Indexing via GAIN-GRN

Each GAIN domain was pairwise aligned to its assigned subdomain A
and B template, respectively. GAIN domains not assigned a receptor
were structurally aligned to all templates using GESAMT®, selecting
the lowest RMSD template for each subdomain. For each SSE the
residue matching the template center was labeled “##.50” with the
corresponding element name (H1-H6, S1-14), enumerating all residues
in the SSE with numbers decreasing in the N-terminal and increasing in
the C-terminal direction. Each ordered residue in the GAIN was
assigned a label and exported tabulated. An additional workflow was
created in an interactive notebook enabling the assignment of the
GAIN-GRN for any protein with an associated model in the
alphafoldDB®° either retrieving the information about the GPS from
the Uniprot database or manually defining the C-terminal GAIN
boundary.

Mutation mapping onto GRN positions

Mutations were retrieved from the Cancer Genome Atlas (TCGA,
within the Genomic Data Commons https://portal.gdc.cancer.gov/) for
each of the 31 human aGPCRs, yielding a total of 6874 individual
mutations. A routine was implemented to correct the residue indices
of the GAIN domain residues to match the UniProtkB indices. By
matching each position, we assigned the GRN to each occurring
mutation within the indexed GAIN domain space with a total of 861
mutations, of which 769 mutations were within ordered segments with
individual labels. In addition, we implemented a parsing routine to
parse the mapped mutations, map the number of mutations and their
occurrence onto any GRN-mapped GAIN domain, and filter mutations
by the impact metrics SIFT and Polyphen®#* to tailor the query routine
to the individual purpose. In our example, cancer-enriched positions
were extracted by calculating the number of cancer-associated muta-
tions against the number of natural variants extracted from dbSNP
(www.nbci.nlm.nih.gov/snp/) analogous to Wright et al., 2019*".

Contact frequencies

For each of the 14,435 GAIN domain structures in the dataset, heavy-
atom residue-residue contacts were computed using a distance cutoff
of 4 A. All pairs of residues sharing a contact are aggregated into a
single contact matrix which is indexed with GRN labels. Some elements
of this matrix are shown partially as well as in full in Supplementary
Tables 2, 3, and Supplementary Data 1. The computation of contacts,
GRN label-handling, and plotting (flareplot and contact-matrix) was
done using mdciao™.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The generated GAIN domain models generated in this study, alongside
all analysis data needed for re-producing all data during the process
outlined in the methods have been deposited in the online repository
zenodo under accession code 12515545%, The PDB entries used in this
study are available under the following accession codes:

4DLQ, 4DLO, 5KVM, 6V55, 8IK]J, 7QU8 The UniProtKB entries used
in this study can be accessed under the following accession code
Q6QNK2 Source data are provided in this paper.

Code availability

The generated code and interactive notebooks are available under
https://github.com/FloSeu/GAIN-GRN and also accessible in the online
repository zenodo under accession code 14140353%,
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