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SUMMARY

Latrophilin-1 (Lat-1), a target receptor for a-Latro-
toxin, is a putative G protein-coupled receptor impli-
cated in synaptic function. The extracellular portion
of Lat-1 contains a rhamnose binding lectin (RBL)-
like domain of unknown structure. RBL domains, first
isolated from the eggs of marine species, are also
found in the ectodomains of other metazoan trans-
membrane proteins, including a recently discovered
coreceptor of the neuronal axon guidance molecule
SLT-1/Slit. Here, we describe a structure of this
domain from the mouse Lat-1. RBL adopts a unique
a/b fold with long structured loops important for
monosaccharide recognition, as shown in the struc-
ture of a complex with L-rhamnose. Sequence align-
ments and mutagenesis show that residues impor-
tant for carbohydrate binding are often absent in
other receptor-attached examples of RBL, including
the SLT-1/Slit coreceptor. We postulate that this do-
main class facilitates direct protein-protein interac-
tions in many transmembrane receptors.

INTRODUCTION

Latrophilins are putative adhesion-class G protein-coupled

receptors (GPCR) (Bjarnadottir et al., 2007) widely expressed

in the brain (Matsushita et al., 1999). Their physiological ligand

or functional roles are unknown, although they have been shown

to interact with synaptic scaffolding proteins (Kreienkamp et al.,

2002) and are implicated in synaptic neurotransmitter release

(Davletov et al., 1998; Willson et al., 2004). Latrophilins are tar-

geted by a-Latrotoxin, the black widow spider venom toxin

(Lelianova et al., 1997), and are required for venom toxicity

(Mee et al., 2004). The architecture of this receptor is character-

ized by the presence of a long, extracellular multidomain seg-

ment, which includes, in chordates, a rhamnose binding lectin

(RBL)-like domain (Ozeki et al., 1991), a hormone binding domain

(Perrin et al., 1998), and an Olfactomedin-like domain (Snyder

et al., 1991); some of these domains are lost in other phyla,

although RBL is always present.

RBL is a relatively rare domain first characterized from sea ur-

chin eggs (SUEL) as a crosslinked homodimer of small, cysteine-

rich subunits (Ozeki et al., 1991). RBL proteins show no amino
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acid sequence similarity to known lectin classes, and do not

require the presence of cofactors, such as calcium, for carbohy-

drate recognition (Ozeki et al., 1991). In all cases characterized

thus far (e.g., Hosono et al., 1999; Tateno et al., 1998; Terada

et al., 2007), RBL domains cluster through tandem repeats,

oligomerization, or both, possibly to increase carbohydrate avid-

ity. The preferred binding monosaccharide of RBL, rhamnose,

has no known biosynthetic pathway in animals; hence, it was

proposed that egg RBL proteins serve an antimicrobial role, as

rhamnose is found in bacterial cell walls (Hosono et al., 1999).

In addition to their presence in the Latrophilin clan, RBL

domains exist in extracellular segments of two other metazoan

transmembrane proteins, polycystic kidney disease (PKD) 1-

like (Li et al., 2003) and a previously uncharacterized single trans-

membrane protein composed of two extracellular RBL domains,

known as C21orf63 in human. A recent Caenorhabditis elegans

study showed that the latter, termed EVA-1, acts as coreceptor

for the SLT-1/Slit neuronal axon guidance cue and influences

axon migration functions (Fujisawa et al., 2007). The role of RBL

in the ectodomains of these receptors and Latrophilin is not

immediately clear, as endogenous rhamnose is rare in animals

(Tymiak et al., 1993). One alternative hypothesis is that rhamnose

mimics a different endogenous carbohydrate ligand (Hosono

et al., 1999), but a noncarbohydrate ligand is another possibility.

Here, we characterize the carbohydrate binding properties of

the RBL domain from mouse Latrophilin-1 (Lat-1) GPCR (hence-

forth simply referred to as RBL), and determine its structure with

and without rhamnose. The first structure of this domain class

shows that the RBL domain adopts a unique a/b fold with two

long structured loops that are important for carbohydrate recog-

nition. Rhamnose is shown to have the highest affinity among

various monosaccharides tested, and we were unable to find

a higher affinity oligosaccharide ligand in an extensive carbohy-

drate binding assay. Sequence alignments of transmembrane

receptor examples of the RBL domain show that residues impor-

tant for carbohydrate binding are often substituted, and similar

substitutions in mouse Lat-1 RBL abolish monosaccharide bind-

ing. We argue that the available evidence suggests that RBL

domains recognize noncarbohydrate ligands when in a trans-

membrane receptor.

RESULTS

RBL Characterization
The Pfam HMM profile of RBL-type domains includes seven con-

served cysteine residues. Genetic constructs of RBL encoding
reserved
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this minimal sequence (mouse Lat-1 residues 47–133) did not,

however, produce folded protein, as judged by NMR. An N-termi-

nal extension of approximately 15 amino acids (residues 30–134),

including an eighth cysteine, was necessary for folding; addi-

tional N-terminal or C-terminal extensions did not appear to

contribute to the folded protein core (data not shown). This eight

cysteine construct agrees well with previous alignments from

tandem repeats of these domains (Hosono et al., 1999; Tateno

et al., 1998; Terada et al., 2007; Figure 1A), and with exon bound-

aries in the gene locus. All cysteine residues were judged to be

oxidized based on mass spectrometry. Later structural studies

(see below) showed a disulphide formation pattern (Figure 1A)

identical to that previously reported for an RBL-type protein

from Spanish mackerel eggs (Terada et al., 2007). Analytical

ultracentrifugation experiments on RBL (residues 30–134) and

larger constructs indicated a monomer in solution (see Figure S1

in the Supplemental Data available with this article online). Inclu-

sion of a ninth cysteine residue through a C-terminal extension

did not result in crosslinked homodimers as observed in SUEL

(Ozeki et al., 1991), and studies of protein dynamics by NMR

showed that RBL remains monomeric, even at high protein

concentrations (Figure S2).

Previous studies reported carbohydrate affinity of RBL-type

proteins from oligomeric and/or concatemeric variants of this

domain (Hosono et al., 1999; Ozeki et al., 1991; Tateno et al.,

1998; Terada et al., 2007) with an assay involving carbohydrate

inhibition of hemagglutination, which requires multimeric protein

forms (Ozeki et al., 1991). Such experiments do not distinguish

between direct or apparent affinity effects. We studied the direct

interaction of RBL with carbohydrates by monitoring NMR spec-

tral perturbations induced by binding (Figures 1B–1D). In gen-

eral, RBL binding preferences are similar to those reported for

other members of this class (Hosono et al., 1999; Ozeki et al.,

1991; Tateno et al., 1998; Terada et al., 2007), with tightest bind-

ing for L-rhamnose (Kd = 1.8 mM) and significantly less binding

affinity for D-galactose, D-fucose, and L-arabinose (Table 1).

Other monosaccharide titrations yielded no apparent binding,

while titrations with galactose-derived disaccharides showed

binding affinities similar to (for melibiose) or less than (lactose)

galactose. Physiological saline or 10 mM CaCl2 in a tricine buffer

did not influence the observed affinities (data not shown). An

extended screen performed by the Consortium for Functional

Glycomics with 320 mono-, di-, tri-, and tetrasaccharides immo-

bilized on a printed chip array, and fluorescently labeled RBL, did

Figure 1. RBL Sequence Alignment and Residue Conservation

(A) Amino acid sequences of RBL domains from egg lectins, Latrophilin receptors, and the mouse PKD-1 like 2 and nematode EVA-1 proteins. -N, -M, or -C sym-

bolize N-terminal, middle, or C-terminal RBL domains in tandem repeats. Two nonhomologous sequence insertions in the EVA-1 N-terminal RBL domain (11

residues) and C-terminal domain (seven residues) are omitted and replaced by double slash symbols. Yellow highlight: cysteine residues; cyan: residues involved

in carbohydrate binding in mouse RBL; hash symbols: buried charged residues that stabilize the protein loops. Secondary structure elements and the pattern of

disulphide formation are shown.

(B) Ligand titrations induced chemical shift perturbations in the NMR spectra as indicated by arrows.

(C) The extent of these perturbations was plotted against ligand concentration and fitted to extract equilibrium parameters using the equation

Dd = Ddsatðð½P�+ ½L�+ KdÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½P�+ ½L�+ KdÞ2 � 4½P�½L�Þ

q
=2½P�, where [P] and [L] are protein and ligand concentrations, respectively, Dd the shift perturbation mea-

sured for each titration point and Ddsat the perturbation at saturation. Multiple perturbed resonances can be fitted simultaneously to different Ddsat values for each

resonance and a single Kd value. Equilibrium parameters (Ka) measured for different compounds under the same conditions are compared in a logarithmic plot

with error bars derived from the fit (D).
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not result in appreciable binding (Figure S3). We were unable to

detect the monosaccharide interactions observed in the NMR

with the immobilized glycan assay because interactions weaker

than 0.1–0.5 mM Kd are below the detection limit for this method

(David F. Smith, personal communication).

Description of the RBL Structure
The RBL solution structure (Figure 2) was determined from 3476

distance, geometry, and orientation restraints, corresponding to

over 35 restraints per ordered residue. A complete analysis of the

model characteristics is provided in Table 2. RBL is composed of

five b strands (residues 36–41, 45–49, 54–65, 101–105, and 121–

130), a single, long a helix (residues 86–96), and two small helical

elements (single-turn a-helix residues 75–78 and single-turn 310-

helix residues 108–110). The overall fold is that of a b sandwich

with two antiparallel sheets (composed of b1, b5, and b3, and

b2 and b4, respectively) enclosing the hydrophobic core (Figures

2A and 2B). The two sheets diverge between b4 and b3, and a2

caps the exposed side of the sandwich. Two disulphide bridges

stabilize elements of this structural core, connecting the ends of

b2 and b5 strands (Cys50–Cys128), and the end of a2 with b4

(Cys96–Cys102).

Unusually for a small protein, RBL includes two long loops

(Figures 2A and 2B) connecting b3 and a2 (residues 66–85,

loop1) and b4 with b5 (residues 106–120, loop2). Although these

loops do not adopt regular secondary structure, apart from the

two single-turn helical elements mentioned, they are well defined

in the calculated ensemble of structures (Figure 2C); this agrees

with fast-timescale dynamics experiments (Figure S2) that show

no significant mobility for these segments. The shorter loop2 fea-

tures a generally conserved proline-rich sequence, PDPCPG,

and is in contact with the larger loop1. The conformation of these

loops is consolidated by two further disulphide bridges connect-

ing the two loops together (Cys83–Cys115) and the end of b1

with loop1 (Cys41–Cys71). Importantly, two fully buried charged

residues, Arg65 and Lys120, stabilize loop1 and loop2, respec-

tively, through multiple hydrogen bonds inferred from the struc-

ture. Both of these charged residues are highly conserved

(Figure 1A and alignment in Terada et al., 2007). Residue-specific

substitutions performed at these sites, such as K120A or K120R,

yielded proteins exhibiting substantial line broadening and

multiple missing resonances in the NMR spectra (data not

shown), supporting the idea that these residues have a key

structural role.

Structural alignments of known protein models against RBL by

Dali (Holm and Sander, 1998) yielded few positive results, none of

which included alignments to the two loops. Alignments with

other structural tools, such as SSM (Krissinel and Henrick,

2004), did not yield any nonzero probability matches. Removal

of the RBL loops from the query model increased the number of

aligned proteins in Dali, although the alignment scores remained

poor. The five best alignments are summarized in Table S1, and

the aligned segments of RBL and the Nucleoplasmin core frag-

ment, the highest scoring protein, are colored in Figure 2D. As

indicated, the structure alignment extends only over the b-

stranded portion of RBL; none of the aligned proteins features

a helix equivalent to a2. Thus, although strictly not a novel fold,

the structure of RBL is unique, as evidenced by low structural

similarity scores (Z % 3.2). For comparison, structurally well-rep-

resented folds of similar size, such as immunoglobulin-type

Table 1. Affinity of Carbohydrates to RBL

Compound tested

Kd (mM)a

WT E42D E42Q E42A E42R K120R K120A

L-rhamnose 1.78 ± 0.04 144 ± 3 141 ± 2 NBD NBD NBD NBD

D-galactose 33.6 ± 0.4 —b —b NBD NBD NBD NBD

D-fucose 61 ± 1.3 ND ND ND ND ND ND

L-arabinose 75 ± 1.3 ND ND ND ND ND ND

L-fucose NBDc ND ND ND ND ND ND

D-glucose NBD ND ND ND ND ND ND

D-mannose NBD ND ND ND ND ND ND

D-arabinose NBD ND ND ND ND ND ND

D-glucuronic acid NBD ND ND ND ND ND ND

N-acetyl galactosamine NBD ND ND ND ND ND ND

N-acetyl glucosamine NBD ND ND ND ND ND ND

N-acetyl neuraminic acid NBD ND ND ND ND ND ND

Heparin NBD ND ND ND ND ND ND

Ouabain 2.21 ± 0.03 ND ND ND ND ND ND

Melibiose 33.3 ± 0.5 ND ND ND ND ND ND

Lactose 148 ± 7 ND ND ND ND ND ND

NBD = no binding detected; ND = not determined.
a Error reported from curve fitting. Estimates based on multiple independent L-rhamnose titration experiments indicate actual Kd errors of approxi-

mately ±7%.
b Spectral perturbations detected but were too small to allow Kd estimation.
c No spectral perturbations were detected with concentrations of up to 100 mM of compound tested. Based on the average of perturbations observed

in other compounds, and the uncertainty in our measurements, we estimate a lower Kd boundary in excess of 1 M.
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domains, yield similarity scores in excess of 10, and Z scores

lower than 2 are not considered statistically significant. Nucleo-

plasmin core features short conserved loops that assist in the for-

mation of a decameric particle (Dutta et al., 2001). Although these

loops are not similar in sequence or structure to the equivalent

long RBL loops, it is intriguing to speculate that the RBL loops

may assist in protein interactions in the physiological function

of this domain.

Marine egg lectins featuring RBL-type domains are primarily

found in multimeric forms of tandem repeats, with the exception

of SUEL. Based on our RBL structure, there are few linker resi-

dues connecting these repeats in known examples—at most,

five in CSL3, STL3, and WCL3 lectins (Terada et al., 2007).

This would suggest that tandem RBL domains follow closely

a beads-on-string model, with limited interactions between do-

mains on the same molecule. Intermolecular interactions are

likely present, forming the multimeric species observed; how-

ever, our data do not reveal the nature of these interactions, as

mouse Latrophilin RBL is monomeric in solution, even under

high protein concentrations.

Carbohydrate Binding to RBL
Structure determination of RBL in complex with L-rhamnose was

based on the average minimized structure of the apoprotein to-

gether with intermolecular restraints, as described in the Exper-

imental Procedures. A total of 28 unambiguous and ambiguous

distance restraints were used to position the rhamnose residue

on RBL. The final 25 model ensemble of structures shows essen-

tially no changes to the RBL domain in the complex (root-mean-

square deviation [rmsd] from the apostructure of �0.23 Å for the

backbone). All intermolecular restraints applied were satisfied

within a 0.3 Å limit, yielding a 0.33 Å rmsd for all rhamnose heavy

atoms in the ensemble when the RBL backbone was superim-

posed (Figure 3B). The carbohydrate binding site is located on

an exposed pocket primarily formed by loop2. In the structure,

atoms from two residues of that loop, N and Nz of Lys120 and

N of Gly117, are directly involved in hydrogen bonding interac-

tions (Figures 3C and 3D) with the rhamnose O4, O3, and O2,

respectively. The O3 of Glu42, from the b1-b2 turn, contribute

two hydrogen bonds to rhamnose O3 and O4, and the side chain

hydroxyl of Tyr63 a further bond to rhamnose O3. No hydrogen

Figure 2. RBL Structure

(A and B) Schematic representations of the RBL structure in two perpendicular orientations. The secondary structure elements and loop1 and loop2 are indicated.

Disulphide bridges are shown in gold.

(C) The 25 structure ensemble of RBL.

(D) Shown in blue and gold are the segments of RBL (top) and nucleoplasmin chaperone core (1K5J, bottom), respectively, that can be aligned with a Ca rmsd

of 2.6 Å.
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bonds involving the rhamnose O5 or O1 (in either a- or b-anome-

ric form) could be inferred from the structure; thus, RBL is not

expected to be selective for a particular rhamnose anomer. In

this configuration, the rhamnose methyl group, H6, occupies

a gap between the Gln77 and Tyr119 RBL side chains and the

Thr118 backbone atoms (Figure 4F). The side chain orientations

of Glu42, Tyr63, and Lys120 do not change substantially in the

complex compared to the apostructure. Indeed, in the apostruc-

ture, these residues take part in the hydrogen bond network

stabilizing loop2; rhamnose appears to join this network seam-

lessly, and complements it by linking the three aforementioned

residues to Gly117.

Table 2. RBL Structure Statistics and Quality Assessment

25 Structure

Ensemble

Minimized Average

Structure

25 Structure Ensemble Minimized Average Structure

Coreb Orderedc Coreb Orderedc

Experimental restraints

NOE

Intraresidue (I � j = 0) 483

Sequential (i � j = 1) 660

Short-range (i � j < 5) 366

Long-range (i � j R 5) 1212

Ambiguous 168

Dihedral angles

f 79

c 77

c1 65

c2 6
3JHNHa couplings 88
1DHN couplings (RDC) 78
13Ca, 13Cb shifts 194

Total no. of restraints 3476

Structure Quality

Rmsds from experimental restraints

Distance restraints (Å) 0.0159 ± 0.0009 0.0159

Dihedral angles (�) 0.34 ± 0.04 0.32
13Ca chemical shifts (ppm) 1.23 ± 0.02 1.26
13Cb chemical shifts (ppm) 1.24 ± 0.02 1.28
3JHNHa couplings (Hz) 0.72 ± 0.02 0.69
1DHN couplings (Hz) 0.37 ± 0.02 0.38
1DHN couplings R factora (%) 1.2 ± 0.1 1.19

Distance violations > 0.3 Å 0 0

Dihedral angle violations >5� 0 0

Rmsds from idealized geometry

Bonds (Å) 0.0027 ± 0.0002 0.0028

Angles (�) 0.610 ± 0.009 0.60

Impropers (�) 0.54 ± 0.02 0.50

Ramachandran statistics (%)

Most favored regions 91.5 77.2 92.5 79.5

Additionally allowed 8.5 21.5 7.5 19.3

Generously allowed 0 0.5 0 0

Disallowed regions 0 0.8 0 1.2

Structure precisiond

Backbone atoms (Å) 0.17 ± 0.03 0.19 ± 0.02

All heavy atoms (Å) 0.64 ± 0.07 0.61 ± 0.05
a The residual dipolar couplings (RDC) R factor was calculated as suggested by Clore and Garrett (1999).
b Excluding the long loops (residues 65–86 and 106–120) and mobile residues.
c Mobile residues ({1H}-15N NOE < 0.6) were excluded. Included are residues 36–131.
d Rmsd from the average structure.
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Past studies of RBL domains binding properties suggested

that carbohydrate binding depends on the orientation of the

O2 and O4 hydroxyls, as these are similar between rhamnose

and galactose, while the O3 orientation differs (Tateno et al.,

2002). However, our structure of the rhamnose complex indi-

cates that all hydroxyl groups apart from O1 form important

hydrogen bonds—no fewer than three in the case of O3. In addi-

tion, three-dimensional galactose and rhamnose structures

show that the O2 and O4 hydroxyl groups do not occupy the

same axial or equatorial positions in both monosaccharides (Fig-

ures 4A and 4B). Close inspection of the chemical shift perturba-

tions induced by rhamnose and galactose shows that a number

of differences exist. In particular, Gly64 and Asp74 are signifi-

cantly perturbed in rhamnose, but not in galactose, while the

relative perturbations of Cys115, Gly117, and Lys120 are also

different (Figures 4A and 4B). Even residues perturbed to a similar

extent, such as Thr118, show differences in the manner of

perturbation, as seen in Figures 4C and 4D.

We suggest that RBL binds galactose in an inverted configura-

tion around the O5-C3 axis when compared with rhamnose; RBL

residues that hydrogen bond to O2 of rhamnose would thus

interact with galactose O4, and vice versa (Figure 4E). In this

configuration, the inversion-equivalent hydroxyl groups of both

monosaccharides occupy the same axial or equatorial positions,

rendering rhamnose and galactose identical with respect to the

putative hydrogen bonding interactions presented here. Judging

from chemical shift perturbation patterns (Figure S4), this type

of inverted binding will also be the case for D-fucose and

L-arabinose.

This arrangement likely explains the apparent selectivity of

RBL domains for rhamnose, as the C6 rhamnose methyl group

affords better complementarity with the binding pocket than

galactose (Figures 4F and 4G); it also indicates a mechanism

for selection of a-linked galactosides. Moieties b linked to galac-

tose would adopt the same equatorial position as rhamnose C6

(Figure 4F); however, due to their large size, this would result in a

steric clash with residues on RBL loop1. This is consistent with

the observed reduction in binding affinity (Table 1) and enhanced

chemical shift perturbations in loop1 observed in the lactose

titration (Figure S4). In contrast, a-linked moieties occupy an

Figure 3. Structure of the RBL/L-Rhamnose Complex
(A) Detail from a 13C-purged/13C-filtered two-dimensional NOESY spectrum acquired on a sample of 13C enriched RBL in the presence of excess rhamnose.

Residual intraprotein crosspeaks are split to double peaks along the indirect 1H dimension due to 1JHC. In contrast, NOE crosspeaks arising from rhamnose ap-

pear as single peaks.

(B) Detail of the complex structure with rhamnose (gold) and interfacial residues indicated. The hydrogen bonding network formed is denoted by dashed lines. The

perturbed Gly64 and Asp74 (through Gln77) residues are also shown.

(C) Coordination of rhamnose binding. The C1 and C6 positions are noted for clarity.

(D) Interfacial residues and rhamnose in the ensemble of structures.
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axial position and would not interact further with the protein,

consistent with the observed identical binding and induced

perturbations of melibiose and galactose. Moieties a linked to

rhamnose will also occupy an axial position and will not affect

rhamnose binding, as seen in ouabain (Tymiak et al., 1993).

Effects of Residue Substitutions
on Carbohydrate Binding
A number of RBL domains, from both transmembrane receptors

and free proteins in eggs, feature substitutions of residues in-

volved in carbohydrate binding, especially of residues equivalent

to Glu42 and Lys120 in RBL (Figure 1A). Examples of these

include the C. elegans Lat-1 RBL, the N- and C-terminal RBL do-

mains of EVA-1 (Fujisawa et al., 2007), the RBL of PKD1-like 2 (Li

et al., 2003), and individual domains of the SML and STL tandem

repeat lectins (Terada et al., 2007). Glu42 in mouse Lat-1 RBL

interacts with the carbohydrates by providing two important hy-

drogen bonds; Lys120 contributes a further hydrogen bond and

stabilizes loop2. We created substitutions in these two residues

of RBL and determined carbohydrate affinity by NMR titrations

(Table 1). All substitutions attempted dramatically reduced or

completely abolished rhamnose and galactose binding, includ-

ing conservative mutations, such as E42D, E42Q, and K120R

(Figure S5). Thus, we expect that the presence of a glutamate

residue at the +1 position from the first cysteine residue is nec-

essary for carbohydrate binding. In the absence of binding, the

glutamate-to-aspartate substitution is probably favored over

other residues in order to neutralize the buried loop2 lysine

charge. Similarly, Lys120 cannot be functionally substituted by

another positive charge, and is likely optimal for the observed

binding.

DISCUSSION

Carbohydrate recognition domains, or lectins, form a ubiquitous

protein class with over 20 lectin families annotated based on

amino acid sequence patterns and functional similarities. Lectins

have a wide variety of possible roles, including cell adhesion, cell

signaling, immune response, host-pathogen interactions, and

control of cellular growth (Sharon, 2007). It is generally accepted

that many of these roles involve recognition of specific carbohy-

drate patterns by these domains, typically in the form of oligo-

saccharides. We have described here what is, to our knowledge,

the first structure and monosaccharide recognition mode of

RBL, a relatively rare lectin-like domain class. The fold adopted

is unique, and carbohydrate recognition involves contacts with

the long loop2. This is similar to carbohydrate binding by other

proteins, such as C-type lectins, that also feature long loops re-

sponsible for binding (Zelensky and Gready, 2005). However, in

contrast to C-type lectins, the carbohydrate binding loop of RBL

Figure 4. RBL/D-Galactose Binding

(A and B) Per residue, combined 1H and 15N chemical shift perturbations, calculated as Dd =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdH0 � dHsatÞ2 + 0:043ðdN0 � dNsatÞ2

q
, derived from RBL titrations

with rhamnose or galactose. The structures of the monosaccharides are shown in two- and three-dimensional representations in the a-anomeric form.

(C and D) Details from the HSQC spectra overlay of the rhamnose and galactose titrations.

(E) Likely binding conformation of galactose compared to rhamnose.

(F and G) Electrostatic charge surface representation of RBL in complex with rhamnose or galactose. The rhamnose methyl group and the equivalent position in

galactose are indicated in a yellow circle.
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is not flexible, and we were unable to find a high-affinity glycan

ligand in a solid-state screen, although rhamnose was repre-

sented only as a monosaccharide in that assay.

However, rhamnose is a questionable endogenous ligand for

RBL domains in extracellular regions of transmembrane pro-

teins. Indeed, there is no evidence that rhamnose binding is

the biological function of Latrophilins, rhamnose is found in

animals only rarely (Tymiak et al., 1993), and there is no known

biosynthetic pathway for it. The direct RBL affinity for rhamnose

measured here (Kd = 1.8 mM) is weak compared with monosac-

charide affinities in other lectin systems (Acharya et al., 1990;

Schwarz et al., 1993; Surolia et al., 1996). Simple calculations

based on published hemagglutination inhibition data (Hosono

et al., 1999) suggest that the Kd of rhamnose binding by SUEL

is approximately 100–200 mM, 10 times tighter than the affinity

displayed by Lat-1 RBL. Therefore, we believe that the single

Lat-1 RBL domain would not be sufficient for carbohydrate dis-

crimination, recognition, and attachment. Furthermore, substitu-

tions of residues important for carbohydrate binding, especially

Glu42 to aspartate, are common in receptor RBL molecules.

This substitution is found in the N-terminal RBL domain of

EVA-1, an SLT-1/Slit axon guidance coreceptor (Fujisawa

et al., 2007), while the C-terminal EVA-1 RBL domain lacks

both the necessary glutamate residue and the conserved loop2

lysine residue (Lys120 in RBL) that is involved in carbohydrate

binding (Figure 1A). The mouse PKD1-like 2 protein RBL domain

also lacks the aforementioned lysine residue; thus, we would not

expect it to bind carbohydrates. Sequence alignments of RBL

domains from these three transmembrane protein clans in di-

verse species show that residues important for carbohydrate

binding are often absent in one species, but present in closely

related organisms. For example, the important glutamate resi-

due is absent in C. elegans Lat-1 RBL, but present in Ostertagia

sp. and Cooperia sp. Lat-1. In our opinion, this lack of strict con-

servation for binding residues in closely related species indicates

that carbohydrate binding is not critical for function.

Although the possibility of a yet-unknown binding glycan can-

not be discounted, we favor a situation whereby RBL domains in

transmembrane proteins, including Latrophilins, recognize non-

carbohydrate ligands exclusively or in addition to carbohydrate

moieties. These noncarbohydrate ligands could include lipids

or, possibly, other proteins through direct interactions. Similar

protein-protein interaction functions have previously been dem-

onstrated for C-type lectin domains; for example, in recognition

of IgE by the Fc3RII receptor (Bettler et al., 1989), Tenascin-R and

Fibulin-2 by Lecticans (Aspberg et al., 1997; Olin et al., 2001),

and major histocompatibility complex ligands by natural killer

cells (Matsumoto et al., 1998). RBL domains may have evolved

to accommodate similar interactions with yet-unknown up-

stream proteins as part of their receptor functions. If correct,

our suggestion has implications for possible Latrophilin ligands

and the mode of SLT-1/Slit binding by EVA-1.

EXPERIMENTAL PROCEDURES

Recombinant Protein Expression and Purification

The RBL domain of mouse Lat-1 (Mus musculus Lphn-1) was cloned in a mod-

ified pPICZa vector (Invitrogen) for expression in Pichia pastoris. Mutant forms

of RBL coding for residue substitutions were constructed by a PCR-based
Structure
method. Approximately 10 mg quantities of these constructs were digested

by SacI or PmeI endonucleases and transformed to P. pastoris strain X-33

by electroporation. Successful transformants through genomic integration in

the aox1 locus were selected for initial resistance to Zeocin (Invitrogen), and

could be stably propagated in the absence of antibiotic. The proteins of inter-

est were tagged for secretion with the a-factor signal propeptide sequence,

and contained a single glycine residue as cloning artifact after posttransla-

tional processing.

Protein expression was performed in minimal media at pH 6.0 with ammo-

nium sulfate and glucose (during biomass growth), or methanol (during induc-

tion of protein expression), as sole nitrogen and carbon sources, respectively.

Uniform isotopic enrichment was achieved by using 15N-enriched ammonium

sulfate (Spectra Stable Isotopes), and unenriched or 13C-enriched glucose and

methanol (Spectra Stable Isotopes) under high-density fermentation condi-

tions. After 5 days of protein expression, cells were discarded and the medium

was filtered, followed by 5-fold dilution with H2O and adjustment to pH 3.0. The

secreted protein was concentrated by retention in a cation exchange column

(GE Biosciences) equilibrated in 10 mM sodium citrate buffer (pH 3.0), and

eluted with a steep gradient to 2 M NaCl in the same buffer. Protein-containing

fractions were pooled, adjusted to pH 6.0, and incubated for 4 hr at room tem-

perature with approximately 1000 U of EndoH endoglycosidase (New England

Biolabs). The protein was subsequently dialyzed against a 10 mM sodium

phosphate buffer (pH 7.0) and further purified by anion exchange chromatog-

raphy (GE Biosciences), dialysis against the final NMR buffer, and concentra-

tion with Amicon spin columns (Millipore). The final protein concentration was

estimated by UV absorbance at 280 nm.

Protein Characterization

RBL extensively dialyzed against PBS was fluorescently labeled with the

AlexaFluor 488 protein labeling kit (Invitrogen). After labeling, free dye was

removed by gel filtration chromatography, and the labeling efficiency was es-

timated as 30%. Approximately 0.1 mg of labeled protein was provided to the

Consortium for Functional Glycomics (National Institute of General Medical

Sciences/National Institutes of Health) for screening in a printed glycan array

chip (version 3.0, 320 glycan targets).

Analytical ultracentrifugation equilibrium experiments were performed at

4�C on 20 mM protein samples in PBS buffer with a Beckman Optima XL-A an-

alytical ultracentrifuge. UV absorbance was monitored at 280 nm. The duration

of the run was 48 hr at 25,000 rpm. The data were fit to an ideal monodisperse

model with the program Origin (OriginLab).

NMR Spectroscopy

All experiments were performed at 30�C with home-built spectrometers, with

11.7 T, 14.1 T, 17.6 T, or 22.3 T field strengths. NMR samples consisted of

1–2 mM protein in a 20 mM sodium phosphate buffer (pH 7.0, 2 mM EDTA,

0.1 mM DSS, 0.02% NaN3) in 5% or 100% D2O, unless otherwise noted. All

stages of sequence assignments, protein dynamics, acquisition, and evalua-

tion of structure calculation restraints were performed in a manner analogous

to that described previously (Vakonakis et al., 2007). Residual dipolar coupling

(RDC) restraints were obtained with a 4% C12E5 polyethylyne glycol/hexanol

alignment medium.

Structure Calculations

The RBL structure was derived by simulated annealing in torsion angle space

starting from an extended conformation, and further refined by a simulated

slow-cooling process in Cartesian space with the XPLOR-NIH software pack-

age (Schwieters et al., 2003). The rhombicity and anisotropy components

necessary for the RDC restraints were determined by grid search with an initial

protein structure, and further refined in subsequent calculation iterations. 4

and c dihedral angle values were predicted with TALOS (Cornilescu et al.,

1999) and supplemented, where possible, with values by PREDITOR (Berjan-

skii et al., 2006). Explicit hydrogen bond restraints were not applied; instead,

we used a potential of mean force that conducts a free search for putative

hydrogen bonds during the simulation, and optimizes the spatial arrangement

of peptidyl backbone units accordingly (Grishaev and Bax, 2004). Only nuclear

Overhauser enhancement (NOE), hydrogen bond, dihedral angle, RDC, and
3JHNHa-coupling potential energy terms were used as restraints during

simulated annealing. Additional potential energy terms were used during
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refinement, including a radius of gyration restraint, with a calculated value of

13 Å applied to residues 36–131 (Kuszewski et al., 1999), a conformational

database potential term (Kuszewski et al., 1996), and direct refinement against
13Ca and 13Cb chemical shifts (Kuszewski et al., 1995). The 25 lowest energy

structures (out of 50 calculated) were retained and comprise the final structure

ensemble.

Calculation of the rhamnose complex structure was based on the average

minimized apo-RBL structure. This was rerefined in the presence of a single

sugar residue with the intermolecular NOE distance restraints obtained. Gen-

erally, intra-RBL restraints were held invariable, although a small number of

RDC and 3J-derived restraints from RBL residues with substantial chemical

shift perturbations were removed. TALOS- (Cornilescu et al., 1999) and

PREDITOR (Berjanskii et al., 2006) -derived dihedral angle restraints were

recalculated based on 1H, 15N, and 13C chemical shifts upon rhamnose satu-

ration. 13Ca/b chemical shift-based restraints were also similarly updated. The

radius of gyration potential term used during refinement was extended to in-

clude the rhamnose residue. Examination of 3D 15N-edited NOE spectroscopy

(NOESY) spectra acquired in the absence or presence of saturating rhamnose

showed a small number of differences in intramolecular RBL crosspeaks.

Where applicable, these crosspeaks were reassigned, while repulsive distance

restraints were implemented for resonances that disappeared in the complex.

Intermolecular distance restraints between rhamnose and RBL were derived

from a 13C-purged/13C-filtered NOESY spectrum (Lee et al., 1994), which se-

lects for NOE crosspeaks between 12C-attached and 13C-attached protons,

acquired in a D2O sample of 13C-enriched RBL saturated with rhamnose (Fig-

ure 3A). Additional intermolecular restraints were obtained by examining the

aforementioned 3D 15N-edited NOESY spectra of RBL for novel crosspeaks

corresponding to rhamnose resonances. Thus, we were able to derive a total

of 16 specific intermolecular distance restraints connecting RBL and the H1,

H4, H5, and H6 atoms of rhamnose. The RBL 1H, 15N, and 13C chemical shift

perturbation data were also used in a manner similar to that utilized in intermo-

lecular docking (Clore and Schwieters, 2003; Dominguez et al., 2003) to give

a further 12 ambiguous distance restraints. No explicit intra- or intermolecular

hydrogen bonding restraints were used for this calculation, and rhamnose was

held at its conformation observed in high-resolution diffraction studies (RCSB

codes: 1M7D and 1M7I), which is virtually identical to the idealized models

provided by the Hetero-Compound Information Centre. The a-anomeric form

of rhamnose was chosen for this calculation because it is three times more

populated in solution, although the b form was also considered. A total of 50

structures was generated, and the final ensemble consists of the 25 lowest-

energy structures. Galactose modeling to the binding site was based on the

conformation found in diffraction studies (RCSB codes: 2NMO and 1OH4).

ACCESSION NUMBERS

The chemical shift assignments of mouse Lat-1 RBL have been deposited in

the BioMagResBank under accession number 15553. The structures and

structure calculation restraints for the same protein have been deposited in

the RCSB Protein Databank under accession numbers 2JX9 and 2JXA for

the 25 structure ensembles of RBL and the RBL-rhamnose complex, respec-

tively. The amino acid sequences and numbering schemes used here corre-

spond to the following accession numbers: mouse Lphn1, UniProt Q5U4D5;

nematode Lat-1A, Q17505; SUEL, P22031; SAL, Q9PVW8; STL1, Q9IB53;

fly Cirl A1Z7G7; mouse PKD1-L2, Q7TN88; nematode EVA-1, Q9XU98;

pufferfish Lphn1, Ensembl SINFRUP00000179613; Xenopus Lat-1,

ENSXETP00000049422; and chicken Lphn2, ENSGALP00000014395.

SUPPLEMENTAL DATA

Supplemental Data include five additional figures, one table, and Supplemen-

tal References, and are available with this article online at http://www.

structure.org/cgi/content/full/16/6/944/DC1/.
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