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Abstract

G protein-coupled receptors (GPCRs) constitute the most versatile superfamily
of biosensors. This group of receptors is formed by hundreds of GPCRs, each of
which is tuned to the perception of a specific set of stimuli a cell may encounter
emanating from the outside world or from internal sources. Most GPCRs are
receptive for chemical compounds such as peptides, proteins, lipids, nucleotides,
sugars, and other organic compounds, and this capacity is utilized in several
sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In
contrast, GPCRs have only anecdotally been implicated in the perception of
mechanical stimuli. Recent studies, however, show that the family of adhesion
GPCRs (aGPCRs), which represents a large panel of over 30 homologs within
the GPCR superfamily, displays molecular design and expression patterns that
are compatible with receptivity toward mechanical cues (Fig. 1). Here, we
review physiological and molecular principles of established mechanosensors,
discuss their relevance for current research of the mechanosensory function of
aGPCRs, and survey the current state of knowledge on aGPCRs as
mechanosensing molecules.
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1 General Overview of Mechanosensation

Each cell in our body is constantly exposed to a multitude of mechanical cues
emanating from cell movements, hydrostatic pressure, shear stress exerted by
fluids, or compressive and tensile forces of various origins. In order to react to
mechanical conditions, these need to be (1) conveyed to mechanosensitive

222 N. Scholz et al.

tobias.langenhan@uni-wuerzburg.de



molecules (a process termed mechanotransmission; Fig. 2). (2) These molecular
mechanosensors perceive force application through conformational changes (mech-
anoreception or mechanosensing). (3) Force-dependent changes in mechanosensor
structure are finally handed over to intracellular signaling cascades that are not
necessarily force dependent per se, including metabotropic effectors and transcrip-
tional pathways, which finally shape the cellular response to the mechanical change
(mechanoresponse) [1]. Here, we will concentrate on the role of aGPCRs in the
process of mechanoreception.

Mechanosensors frequently constitute integral membrane proteins, and it is
commonly accepted that mechanical forces that impinge onto the cell surface affect
local and global membrane tension. Thus far, a number of molecules have been
attributed with a function in mechanoreception, among them ion channels, cell
surface receptors (e.g., integrins, cadherins/selectins), and, more recently, G
protein-coupled receptors (GPCRs).

2 Established Mechanosensors

Mechanosensors evolved different receptive strategies to reliably perceive, inte-
grate, and convey mechanical information into the cell. Even though detailed
molecular knowledge of the mechanotransduction cascade is, for many
mechanosensors, still unknown, an understanding of the receptive strategies of
these molecules will help define to what extent aGPCRs serve as metabotropic
mechanosensitive devices. Thus, the following section delineates potential
mechanisms that underlie mechanotransduction and provides an overview of
established mechanosensors.

2.1 Molecular Models of Mechanosensation

Two models currently encompass how mechanical strain is transmitted onto
mechanosensors. The “tethered” model is based on the concept that surface
molecules are anchored to intra- and/or extracellular components via molecular
springs, which convey mechanical forces to membrane integral mechanosensors
(e.g., TMC, extracellular; see Sect. 2.2.5 NOMPC, intracellular; see Sect. 2.2.3).
Alternatively, in the “membrane” model, mechanosensitivity is shaped by the
lateral pressure profile [2] at the receptor/bilayer interface promoting conforma-
tional changes of mechanoreceptive proteins. Given that a cell’s response to force is
signified by its mechanical context by means of the surrounding extracellular
matrix (ECM), neighboring cells, and the mechanical properties of the cell itself,
it is reasonable to assume that both mechanisms are employed in parallel to ensure
reliable integration of physical forces.
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2.2 Ionotropic Mechanosensors

Guharay and Sachs were the first to discover that skeletal muscles in chick express
an ion channel that can be activated by membrane stretch [3, 4]. After that, several
years passed until the first mechanosensitive channel genes, mscL and mscS, were
identified and cloned from prokaryotes [5–7]. In Bacteria and Archaea,
mechanosensitive channels are primarily involved in detecting osmotically induced
cell swelling to regulate turgor [6, 8].

A large number of mechanosensitive channels were identified in eukaryotic cells
[9] and, based on their ion permeability, can be divided into two classes: excitatory
cation-selective ion channels and inhibitory depolarization-gated ion channels. We
will briefly discuss examples for both groups below. Furthermore, a novel ion
channel family—transmembrane channel-like 1 and 2 (TMC1/TMC2)—was
recently identified.

2.2.1 Piezo
Vertebrate Piezo1 and Piezo2 (or Fam38A and Fam38B) channel subunits comprise
large membrane proteins with 14 predictedmembrane-spanning segments [10]. Het-
erologous expression of Piezo conveys mechanosensitivity to a mechanically
insensitive cell [11]. Furthermore, functional ion channels could be reconstituted
from Piezo proteins in liposomes [12]. Thus, ectopically expressed Piezo appears to
form mechanosensitive ion channels independent from cytoskeletal elements
implying that the channel activating tension originates from the membrane [11–13].

Mammalian Piezo 1/Piezo 2 was detected in the lung, bladder, colon, and skin.
Piezo 2 was additionally enriched in dorsal root ganglia (DRGs) [11], where it acts
as a mechanotransducer to regulate the perception of tactile stimuli [14, 15]. Simi-
larly, the piezo2b homolog plays a role in zebrafish touch sensation [16]. Moreover,
Piezo1 was assigned roles in the regulation of erythrocyte cell volume and vascular
development in zebrafish and mouse, respectively [17–19]. The sole Piezo homolog
in Drosophila (dmpiezo) produces, similar to its vertebrate counterpart, mechano-
dependent ion currents and is required for the perception of noxious mechanical
stimuli in vivo. Interestingly, Piezo appears to act in parallel to Pickpocket (PPK),
which belongs to the (DEG)/ENaC family, to regulate mechanical nociception in
Drosophila larvae [20].

2.2.2 DEG/ENaC Channel
The DEG/ENaC channel family was named after their first members, degenerins
(mec-4 and deg-1) and epithelial sodium channel (ENaC) from C. elegans and
mammals, respectively [21–24]. DEG/ENaC channels are expressed in different
tissues across a large range of phyla, are usually Naþ-selective, and appear to be
activated by a wide spectrum of stimuli including mechanical force [25]. Two
transmembrane domains (N- and C-termini intracellular) connected by a large
extracellular loop define the protomer architecture of DEG/ENaC proteins, which
can form both homo- and heteromeric ion channels [26–28].
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The first identified eukaryotic genes involved in touch sensation,mec-4 andmec-
10 (mechanosensory abnormal) [29], were uncovered through forward genetic
screens in C. elegans, in which mutants were probed for their ability to respond
to gentle body touch conveyed through a defined set of touch receptor neurons [29–
31]. Genetic, biochemical, functional, and morphological analyses implicate four
MEC proteins (MEC-4, MEC-10, MEC-2, MEC-6) to compose mechanosensory
channel complexes [32–34]. The pore-forming subunits are presumably contributed
by MEC-4 and MEC-10 [23, 32, 35, 36]. Interestingly, the local lipid milieu appears
to influence the function of this mechanosensory complex [33, 37–39], suggestive
of a membrane stretch-mediated gating mechanism.

2.2.3 TRP Channels
Transient receptor potential (TRP) channels are involved in recognizing a broad
range of mechanical and chemical stimuli [40]. Each TRP channel gene belongs to
one of seven subfamilies [TRPC (classical), TRPV (vanilloid), TRPM (melastatin),
TRPN (NOMPC), TRPA (ANKTM1), TRPML (mucolipin), and TRPP
(polycystin)] [41] and encodes a channel subunit with at least six transmembrane-
spanning segments and intracellular N- and C-terminal regions with subfamily-
specific domain layout [42]. Four subunits assemble into functional homo-
or heteromeric ion channels, commonly nonselective for cations and permeable to
Ca2+ [41, 43].

Mechanosensitivity has been reported for a number of TRP channel subunits;
however, to what extent these proteins are directly involved in
mechanotransduction remains to be resolved for many family members. Interest-
ingly, TRP channels were also identified as partners of GPCRs and aGPCRs in this
context.

For example, TRPC6 is a downstream target of a mechanosensitive GPCR
responsible for mediating myogenic vasoconstriction in response to elevated
intraluminal pressure [44]. Further, mouse sensory neurons express TRPC1,
TRPC3, and TRPC6 [45]. Trpc3/Trpc6 double knockout mice display altered
responses to tactile stimuli. These mutants also exhibit pronounced hearing
impairments and vestibular defects consistent with TRPC3 and TRPC6 expression
in cochlear and vestibular hair cells [45]. Recent work indicated that TRPC1,
TRPC3, TRPC6, and TRPC5 heteromultimerize to contribute to cutaneous and
auditory mechanosensation. Moreover, these TRP channel subunits were proposed
to contribute indirectly to cochlear mechanotransduction [46].

Further, members of the TRPN family have been associated with the perception
of mechanical stimuli in Drosophila (no receptor potential; NOMPC) [47, 48],
hearing in zebrafish (TRPN1) [49], and proprioception in C. elegans (TRP-4)
[50]. NOMPC localizes to the ciliary tips of mechanosensory neurons of the
Johnston’s organ and chordotonal organs in Drosophila [51, 52]. NOMPC can be
directly mechanically activated and confers mechanosensitivity to otherwise insen-
sitive cells, rendering NOMPC a bona fide mechanotransduction channel
[53, 54]. Recent data indicate that the 29 ankyrin repeats of NOMPC’s
N-terminus constitute a molecular spring that conveys forces generated by the
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cytoskeleton to modulate ion channel gating [55, 56]. However, loss of nompC does
not completely abolish fly hearing [47], suggesting the existence of additional
transducer molecules [57]. Alternatively, NOMPC may sensitize or adjust the
mechanosensory complex for mechanical input [58]. Interestingly, genetic analysis
suggests that the aGPCR dCIRL/latrophilin modulates NOMPC activity in sensory
chordotonal neurons [59] (see Sect. 3.2).

The C. elegans TRPV proteins OSM-9 and OCR-2 form heteromeric channel
complexes in sensory neurons that respond to touch and hyperosmolarity [60–
62]. Consequently, loss of function of osm-9 results in worms that are less sensitive
to osmotic and mechanical challenges [60, 62].Drosophila encodes TRPV proteins,
INACTIVE and NANCHUNG, that are mutually required for the assembly of
heteromultimeric channels involved in fly hearing and possibly auditory
mechanotransduction [57, 58, 63, 64]. Epistatic analysis implicated NANCHUNG
function in a mechanosensory signaling pathway together with the aGPCR
latrophilin/CIRL [59].

Finally, TRPP homologs TRPP2 (polycystin 2 or PC2) and TRPP3 (polycystic
kidney disease 2-like 1, PKD2L2) have been associated with mechanosensation.
TRPP2 forms a receptor-ion channel complex with polycystin 1 (PC1, TRPP1)
[65, 66], which localizes to primary cilia of renal epithelial cells and endothelial
cells [67–70]. PC1 does not belong to the TRP channel family; it contains 11 -
transmembrane-spanning regions and a large extracellular N-terminal domain that
promotes cell-cell and cell-matrix interactions [71, 72] (see also [73]). The TRPP2/
PC1 complex mediates Ca2+ transients in response to ciliary deflections induced by
luminal shear stress [67, 68, 74]. Intriguingly, filamin A cross-links TRPP2 and the
actin cytoskeleton to regulate stretch-activated cation channels (SACs) involved in
cardiovascular pressure sensing [70]. Furthermore, TRPP2 forms ciliary
mechanosensitive sensors with TRPV4 to transduce mechanical stress [75].

2.2.4 K2P Channels
K2P channels are comprised of four transmembrane-passing segments, two pore-
forming regions, and intracellular N- and C-terminal portions. They assemble into
hetero- and homodimeric ion channels. TWIK-related K+ channels (TREK) and
TWIK-related arachidonic acid-stimulated K+ channel (TRAAK) are membrane
tension-gated channels characterized by low mechanical threshold and a broad
range of tension activation [76].

TREK-1 and TREK-2 are widely expressed within the central and peripheral
nervous systems as well as nonneuronal tissues such as the cardiovascular system,
lung, colon, and kidney. By contrast, TRAAK expression appears to be confined to
neuronal tissues [77]. In the nervous system, K2P channels are physiologically
relevant as they contribute considerably to cell hyperpolarization, which
balances/counteracts depolarization-induced action potentials, thereby shaping the
electrical response to mechanical force. For example, TRAAK activity counteracts
activation of Piezo to curtail action current generation in cultured neuroblastoma
cells [78]. Further, TRAAK/TREK and mechanosensitive cation channels are
coexpressed in sensory neurons of DRGs [79]. Deletion of Traak, Trek-1, or
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Trek-2 genes in mice renders them hypersensitive to mechanical challenge [80, 81],
which is in line with the notion that K2P channels set the mechanical threshold for
action potential generation [76]. Evidence for the physiological relevance of
TREK-1 in mechanosensation outside the nervous system has emerged as well.
Polycystins play a role in force-dependent apoptosis of renal epithelial cells, a
function that was shown to rely on the opening of TREK-1 [82]. TREK-1 is
enriched in the bladder, uterus, and colon where it regulates stretch-induced
contraction of smooth muscle cells [83].

2.2.5 Transmembrane Channel-Like 1 and 2 Proteins
Recently, the transmembrane channel-like 1 and 2 (TMC1 and TMC2) proteins
emerged as novel components required for auditory and vestibular
mechanosensation in mammals [84–86]. The Tmc gene family encodes proteins
with at least six transmembrane regions flanked by intracellular N- and C-terminal
portions [87] reminiscent of TRP channel proteins. However, TMC proteins do not
share sequence homologies with known ion channels [85, 88], even though recent
work indicated that C. elegans tmc-1 assembles into nonselective cation channels
when heterologously expressed [89]. Several lines of evidence implicate TMC
proteins as key components of the hair cell transduction complex. First, consistent
with the mRNA expression pattern [90], TMC1 and TMC2 fusion proteins localize
to stereocilia of the inner ear hair cells [86]. Second, mutations of the human Tmc1
gene have been associated with dominant and recessive nonsyndromic sensorineu-
ral hearing deficits [84]. Similarly, dominant and recessive mutations of mouse
Tmc1 result in animals that exhibit defective hearing (Beethoven) and deafness (dn),
respectively [84, 91]. Third, in mice, loss of function of Tmc1 or Tmc2 deprives hair
cells of mechanosensory responses [90, 92]. Fourth, robust apical FM1-43 dye or
gentamicin uptake reported for wild-type hair cells was abolished in the absence of
TMC1 and TMC2 [90, 93, 94]. Fifth, expression of either TMC1 or TMC2 rescues
loss of hair cell mechanosensitivity displayed by homozygous null mutants
[90]. Sixth, protocadherin-15 (PCDH15) together with cadherin-23 forms extracel-
lular tethers (called tip links), which connect adjacent pairs of stereocilia and
transmit hair cell bundle deflection-based mechanical forces to mechanosensors
[95, 96]. Strikingly, recent work uncovered a direct interaction between PCDH15
and TMC1 as well as TMC2 in fish and mouse [97, 98].

Taken together, these results suggest that TMC proteins are strong candidates for
the long sought-after mechanosensitive channel required for mechanotransduction
in mammalian hair cells [85].

2.3 Integrins and Cadherins

Cell adhesion enables the generation of mechanical tissue cohesion as well as cell-
cell and cell-matrix communication vital for a myriad of physiological processes.
But how do cells sense the mechanical context of their microenvironment (e.g.,
extracellular matrix or adjacent cells), and how are these signals translated into
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cellular responses? Based on structural and functional properties, integrins and
cadherins have been associated with mechanosensation in this vein.

2.3.1 Integrins
Integrins constitute a large family of glycoprotein receptors that bridge cell-cell
contacts (cell adhesion) and interconnect intra- and extracellular matrices (ECMs)
in metazoans. Integrins exist as heterodimers comprised of non-covalently bound α-
and β-subunits, which are combined to form more than 20 distinct, functionally
nonredundant receptor variants [99, 100].

Integrin heterodimers are inserted into the plasma membrane through a single
transmembrane domain per protomer. The large extracellular domain (ECD)
mediates interactions with ECM components (e.g., collagens, fibronectins, or
laminins) and adjacent receptors [e.g., vascular cell adhesion molecule-1
(VCAM-1) and intercellular cell adhesion molecule (ICAM)] [100, 101]. The
short intracellular domain (ICD) interacts, via cytoplasmic adaptors, with cytoskel-
etal elements to modulate local actin polymerization and global cytoskeletal
dynamics [102, 103]. This molecular layout allows integrins to mechanically
interlink the cell’s exterior and interior providing the backbone for mechanical
stress-induced assembly of focal adhesions (FA) [104–107], stimulation of signal-
ing pathways, and gene transcription [108–110].

Importantly, integrins possess the capacity to confer signals in an “outside-in” or
“inside-out” fashion associated with different biological ramifications. “Outside-
in” signaling is based on the interaction of integrin ECDs with ECM molecules or
opposing cellular receptors. These engagements provide information about ECM
rigidity as well as adjacent cell/tissue geometry, which in turn regulate cellular
growth, differentiation and apoptosis, cell polarity, and formation of focal adhesion
complexes [105, 111–114]. During “inside-out” signaling, intracellular activators
such as kindlins or talins associate with integrin ICDs to induce conformational
changes that alter the affinity to extracellular ligands (“integrin activation”). Hence,
this signaling mode affects cell adhesion and migration as well as ECM assembly
[102]. Interestingly, the ionotropic Piezo1/Fam38A channel subunit was shown to
induce integrin activation through an R-Ras-dependent mechanism [115].

In sum, integrin-based adhesion complexes are fit to perceive and integrate
external forces into the preexisting cellular mechanical context to balance the
ECM resistance according to tension forces generated by the cytoskeleton.

2.3.2 Cadherins
Cadherins are a large group of cell surface receptors that mediate Ca2+-dependent
cell adhesion [116]. The cadherin family includes a vast number of cell surface
molecules; however, classical cadherins (E-, N-, P-cadherins) and the related
desmosomal cadherins are, thus far, the best characterized. They feature cadherin
repeat-containing ECDs, a single membrane-spanning region, and ICDs which
interact with β-catenin (classical cadherins), γ-catenin (desmosomal cadherins),
and components of the cytoskeleton [117].
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Cadherins engage in ECD-dependent homo- and heterophilic interactions that
may mediate adhesive and selectivity functions, respectively [118]. For example,
force measurements uncovered that cadherins establish three spatially distinct
bonds at different ECD regions that possess varying kinetic and mechanical
properties [119, 120]. In contrast, ICDs associate with F-actin via catenin/vinculin
interactions [121–124]. This structural setup allows cadherin complexes to act as
mechanosensors that actively sense and transduce exogenous and endogenous
mechanical fluctuations to trigger biochemical changes that direct cell responses
[125]. Strikingly, the tensile force administered to an adhesion site is directly
proportional to ECM stiffness [126].

Several lines of evidence support the role of cadherin-based adhesive junctions
in mechanotransduction. First, cell-cell junctions undergo force-dependent
remodeling not only in vitro but also in vivo [127, 128]. In Drosophila and
C. elegans, cytoskeletal-provoked tension at cadherin junction coincides with a
decline in junction expansion in various developmental processes. For example, the
association of the actomyosin apparatus with cadherin junctions is a prerequisite for
contraction-driven apical constriction during C. elegans gastrulation. A similar
mechanism has been reported for ventral furrow formation in Drosophila
[129]. Intriguingly, recent work demonstrated that during germ band extension in
Drosophila, junction shrinkage appeared to result from tension-generated cadherin
accumulation, which was counteracted by cadherin endocytosis [130]. Second, the
mechanics of intercellular junctions (e.g., cell traction, adhesion strength, and
junction rigidity) change according to the mechanical environment [122, 131–134].

InDrosophila, junctional mechanics are regulated in a forward loop that controls
cadherin levels with respect to actomyosin density to enable adequate tissue
morphogenesis [130, 135].

Taken together, cadherin complexes probe their environment for tensional
changes to preserve the mechanical integrity of cellular junctions and to regulate
morphogenesis and homeostasis [136–139].

2.4 Metabotropic Mechanosensors

GPCRs are biosensors vital for the transduction of light, olfactory and gustatory
stimuli, as well as neurotransmitters and hormones into biochemical signals and
thus shape a multitude of physiological processes [140]. Based on this perception
profile, GPCRs were classically considered chemoreceptors. However, in recent
years, mounting evidence suggests that mechanical forces can also be perceived
through GPCRs. Therefore, GPCRs most likely constitute polymodal sensors with
both chemoreceptive and mechanoreceptive properties.

The first mechanosensitive GPCR identified was the angiotensin II type 1 recep-
tor (AT1R), which mediates functions in preload-induced cardiac hypertrophy
in vitro and in vivo. In contrast to autocrine-mediated vasoconstriction, activity
of AT1R is brought about independently of angiotensin II and facilitates intracellu-
lar signaling through Gq/11 proteins [141, 142]. In addition to this
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pathophysiological function, intraluminal pressure stimulates AT1Rs located in the
arterial blood vessels causing myogenic vasoconstriction, a mechanism referred to
as the Bayliss effect [44]. Mounting evidence implicates PLC kinases in mechano-
dependent signaling pathways, which may subsequently trigger activation of
ionotropic TRPC channels (see Sect. 2.2.3) to set arterial myogenic tone [44, 141,
143, 144].

Strikingly, AT1R undergoes mechanically induced conformational changes that
stabilize the seventh transmembrane domain near the agonist-binding pocket, a
molecular organization that is different from that induced by agonist and inverse
agonist signaling [145–147], suggesting stimulus modality-dependent signaling
modes of this GPCR.

Thus far, eight additional putative mechanosensitive Gq/11 protein-coupled
receptors have been described [148]. For example, time-resolved fluorescence
microscopy of endothelial cells unveiled that mechanical strain causes a ligand-
independent rise in bradykinin 2 receptor (B2R) activity [149]. The authors suggest
that, similar to AT1R, conformational alterations of B2R are due to tension-based
properties of the lipid bilayer. However, it remains unclear if mechanical stimula-
tion of B2R is causally linked to effective G protein coupling. Another interesting
example of a potential mechanosensitive GPCR derives from type 1 parathyroid
hormone receptor (PTH1R) essential for Ca2+ homeostasis in osteoblasts
[150, 151]. Bone formation and bone mass regulation rely on the availability of
parathyroid hormone (PTH) and mechanical loading, signal modalities proposed to
converge at PTH1R [151]. Evidence for a role in mechanoreception was also
reported for dopamine receptor type 5 (D5R) and formyl peptide receptor (FPR1),
which are both, similar to PTH1R, excitable through fluid flow-generated shear
stress in endothelial cells and neutrophils, respectively [152, 153]. Interestingly,
D5R localizes to primary cilia in vitro and in vivo and regulates their length through
cofilin and actin polymerization. In addition, the authors report that ciliary sensi-
tivity to fluid shear stress can be modified through chemosensory properties of the
receptor [152]. Furthermore, electrophysiological recordings unveiled
hypotonicity-dependent responses of heterologously expressed vasopressor
receptors, ETA endothelin receptor (ETAR) and V1A receptor (V1AR), as well as
H1 histamine receptor (H1R) and M5 muscarinic acetylcholine receptor (M5R) [44].

3 Adhesion GPCRs in Mechanosensation

A novel intriguing line of evidence for the mechanoreceptive role of GPCRs derives
from the large family of aGPCRs, which stand out from canonical GPCRs because
of their structural and functional profile as well as the conspicuous lack of soluble
ligands [154]. Thus, are aGPCRs particularly prone to sense mechanical cues?

Three members of the aGPCR class, GPR56/ADGRG1, GPR126/ADGRG6, and
latrophilin/CIRL/ADGRL, have been recently suggested to be involved in
mechanosensation (Fig. 1) [59, 155, 156]. Like canonical GPCRs, aGPCRs possess
a seven-transmembrane helix region (7TM) that can intracellularly couple to
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Fig. 1 Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate
ligands have been described in settings, which suggest that they function in a mechanosensory
capacity. For details, see text
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heterotrimeric G proteins capable of triggering a multitude of signaling cascades
that determine cellular responses (Fig. 2; see [157, 158]).

Further, aGPCRs possess large extracellular N-termini, which for many aGPCRs
contain domains that are involved in cell-cell or cell-matrix adhesion [154] (see
also [159]). Uniquely, the N-termini of many aGPCRs can be separated from the
7TM through an autoproteolytic event catalyzed by the GPCR proteolytic site
(GPS) motif [160, 161], which is part of a much larger protein fold (GPCR
autoproteolysis-inducing (GAIN) domain) [162]. Receptor cleavage is thought to
occur early in the secretory pathway during protein maturation and generates an
N-terminal fragment (NTF) and C-terminal fragment (CTF), which are predicted to
traffic together to the cell surface where they are located as non-covalently bound
heterodimers (Fig. 3; see also [73, 159]).

For several aGPCRs, a cryptic tethered ligand, termed the Stachel sequence, has
been described, which acts as a potent agonist for downstream signaling [163–166]
(Fig. 3; see also [157, 158]). Yet, crystal structures of aGPCR GAIN domains
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Fig. 2 Principal elements of mechanotransduction. The process of mechanotransduction can be
grossly divided into three steps. (a) Mechanotransmission (indicated in light pink) that, according
to current models, can be conveyed through extracellular or intracellular tethers and/or the plasma
membrane. (b) Mechanosensation (blue), perceived through force-dependent conformational
changes of membrane integral sensor proteins (gray). (c) Mechanoresponse (green), which
induces changes in cell physiology (e.g., ion channel conductances, metabolic states, or modula-
tion of transcriptional activity). xTM ¼ variable number of transmembrane helices depending on
the mechanosensor protein architecture (TRP channels, 6TM; aGPCR, 7TM; polycystin 1, 11TM;
Piezo, 14TM)
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demonstrate that the Stachel sequence is deeply buried between two β-sheets [162],
suggesting that the tethered agonist, at least for some aGPCRs, may not be readily
exposed. How, then, might the Stachel sequence “escape” the ensconcement of the
GAIN domain β-sheets in order to confer a signal to the receptor’s 7TM stretch?
Recent studies suggest that mechanical activation may be at play, which could
induce conformational changes within the GAIN domain or complementary
portions of the receptor to liberate the Stachel sequence and to allow receptor
activation (Fig. 3).

3.1 GPR126/ADGRG6

As described in [167], myelin is the multilamellar sheath generated by specialized
glial cells called Schwann cells in the peripheral nervous system and
oligodendrocytes in the central nervous system. In the peripheral nervous system,
GPR126 couples to Gαs and elevates cAMP in Schwann cells to initiate myelination
(Fig. 1) [155, 163, 168–171]. The Stachel sequence of GPR126 is a potent agonist
to trigger cAMP elevation, and analysis of zebrafish mutants has recently provided
evidence that Stachel-mediated signaling is critically important in vivo. Liebscher
and colleagues generated a new mutant allele of gpr126, gpr126stl215, in which two
amino acids essential for signaling were precisely deleted from the Stachel
sequence. In vitro analysis demonstrated that this mutant receptor could be cleaved
and that it trafficked appropriately to the cell surface, although it was incapable of
signaling via cAMP. Accordingly, in vivo, gpr126stl215 mutant Schwann cells could
not initiate myelination [163]. This work suggested a model in which Stachel-
mediated activation of Gpr126 is required for cAMP elevation and subsequent
myelin initiation.

To determine how the Stachel sequence of GPR126 might be exposed during
Schwann cell myelination, Petersen and colleagues investigated the relationship
between one GPR126 binding partner, laminin-211, and GPR126 signaling [155]
(discussed further in [167]). Laminin-211 is a heterotrimeric protein encoded by
Lama2, Lamb1, and Lamc1 genes [172], and like GPR126, laminin-211 is required
for Schwann cell development and myelination [173]. Overexpression of lama2 in
zebrafish rescues myelination in gpr126 hypomorphic mutants in a cAMP-
dependent manner, suggesting that laminin-211 activates Gαs signaling.

Fig. 3 (continued) present as an NTF/CTF heterodimer at the cell surface, force transmission may
separate the NTF from the CTF, thereby exposing the cryptic tethered agonist that interacts with
the 7TM domain and triggers intracellular responses. (c) Several aGPCRs cannot be
autoproteolytically cleaved, yet they appear to harbor a Stachel sequence that can stimulate
receptor activity. This indicates that the tethered agonist can interact with the 7TM domain even
if it remains associated with GAIN domain, possibly through conformational changes of the GAIN
domain that render the agonist accessible. Note that this scheme illustrates putative intramolecular
interactions between GAIN/Stachel and the 7TM region of aGPCRs; however, intermolecular
interactions are conceivable as well
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Intriguingly, addition of laminin-211 to GPR126 in heterologous cell systems
suppressed cAMP elevation under standard culture conditions and elevated
cAMP levels under dynamic conditions (vibration or shaking) [155]. These data
can be reconciled by observations from related aGPCRs, noted above, that the
Stachel sequence is buried, not exposed, between two β-sheets of the GAIN domain
[162]. The Stachel sequence is so deeply buried that significant structural changes
might be required for Stachel-mediated receptor activation to occur (Fig. 3). In vitro
analyses of mutant receptors demonstrated that laminin-211 addition facilitates
greater GPR126 activation than dynamic forces alone and that dynamic force
signaling requires the Stachel sequence to activate GPR126.

These in vitro findings suggested that laminin-211 enhances GPR126 structural
changes to allow for Stachel-mediated signaling, and the overexpression studies in
zebrafish demonstrated that increased lama2 levels can drive Gpr126-dependent
myelination. What physical forces might laminin-211 impart upon GPR126
in vivo? Interestingly, laminin-211 polymerization is known to be essential for
Schwann cell development; Lama2dy2jmouse mutants have a spontaneous mutation
that leads to aberrant splicing and deletion of the laminin α2 polymerization
domain, and these mice have defects in Schwann cell development and myelination
[174–176]. To test if laminin α2 polymerization could be an activating force on
Gpr126, reminiscent of physical forces in vitro, Petersen and colleagues engineered
a non-polymerizable Lama2 overexpression construct to mimic the Lama2dy2j

mouse mutation. Unlike wild-type lama2, the polymerization-defective lama2
(dy2j) was not sufficient to rescue myelination defects in hypomorphic gpr126
zebrafish mutants [155].

In summary, the in vitro studies suggested the possibility that GPR126 might be
sensitive to mechanical force, while the in vivo studies implicated laminin-211
polymerization as a potential source to transmit forces and stimulate
mechanosensation in vivo.

3.2 Latrophilins/ADGRL1–ADGRL3

Contemporaneous work in Drosophila has even more strongly implicated an
aGPCR in mechanosensation, as latrophilin/CIRL was shown to shape the response
of chordotonal sensory neurons by determining the sensitivity of certain
mechanosensors in a cell-autonomous manner [59]. Chordotonal neurons are
peripheral, compound mechanosensory neurons in Drosophila, which perceive
mechanical signals such as sound, touch, and muscle stretch [47, 52,
177]. Latrophilin/CIRL is robustly expressed in these cells (unpublished data)
suggestive of a function in this cell type. Indeed, analyses of a newly engineered
dCirl null allele revealed many interesting phenotypes consistent with a role for
latrophilin/CIRL in mechanosensation. dCirl mutant larvae exhibited aberrant
crawling patterns, and although locomotion is a complex behavior controlled by
both motor outputs and peripheral sensory inputs, this defect could be partially
rescued by chordotonal neuron-specific expression of dCirl. Moreover, dCirl
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mutant larvae were also less responsive to gentle touch (touch perception is a
known function of the chordotonal organ), and this phenotype could only be
suppressed by chordotonal neuron-specific re-expression of this aGPCR [59]. Inter-
estingly, the morphology of chordotonal neurons is grossly normal in dCirl null
mutants, suggesting that latrophilin/CIRL is required specifically for the function of
these neurons and not for their development or morphology.

To elucidate the potential role of latrophilin/CIRL in mechanosensation, Scholz
and colleagues directly applied mechanical stimulation (vibration stimuli) to the
cap cells of the chordotonal organ and simultaneously recorded action currents
from chordotonal neurons. While dCirl mutant neurons maintained spontaneous
activity in the absence of vibration stimuli, the mutant neurons displayed signifi-
cantly lower action current frequencies across the entire tested vibration spectrum.
Compound mutant analyses also demonstrated that dCirl genetically interacts with
TRP channels, known as mechanosensor molecules of Drosophila chordotonal
neurons [59] (see also Sect. 2.2.3).

All in all, these studies establish that latrophilin/CIRL can modulate the sensi-
tivity of neuronal mechanosensation (Fig. 1). Given that several cell-specific rescue
experiments demonstrate that dCirl functions cell autonomously in chordotonal
neurons, likely via CTF signaling, it will be interesting to determine if and how
Stachel sequence signaling modulates these functions of latrophilin/CIRL in
mechanosensation (Fig. 3).

3.3 GPR56/ADGRG1

The role of aGPCRs as mechanosensors also extends beyond the nervous system.
Skeletal muscle can respond to multiple stimuli, including mechanical tension,
which is a potent regulator of muscle mass. In myotubes, a splice isoform of the
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)
induces muscle hypertrophy. Interestingly, overexpression of PGC-1α increases
Gpr56 expression, and GPR56 overexpression also induces muscle hypertrophy
dependent on Gα12/13 signaling. Resistance exercise causes muscle hypertrophy,
but this phenotype is attenuated in Gpr56mutant mice [156] (see also [178]). These
results collectively highlight a potential role for Gpr56 in sensing muscle fiber size,
which could be mediated by mechanical sensitivity to stretch (Fig. 1).

Furthermore, in the central nervous system, GPR56 is required for proper
cortical development (i.e., cortical folding), which has been directly linked to
mechanosensation [179]. GPR56 and other aGPCRs including GPR114/ADGRG5
and GPR97/ADGRG3 are also highly expressed on lymphocytes [180]; it is tempt-
ing to speculate that signaling via these aGPCRs might be affected during the
rolling and extravasation behaviors characteristic of these cells.
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3.4 Mechanosensation by Other Adhesion GPCRs

These recent studies implicating Gpr126, latrophilin/CIRL, and GPR56 as putative
mechanosensitive receptors raise the interesting and obvious question as to whether
other aGPCRs might share this mechanosensitive property.

Indeed, one splice variant of GPR114 is sensitive to mechanical stimulation
[166], although it is not yet clear in what physiological context this receptor may
partake in mechanoreception. In addition, recent reports implicate EMR2/ADGRE2
in vibratory urticaria [181], an autosomal dominant disorder that is signified by
hives and systemic manifestations in response to cutaneous vibration. Interestingly,
mast cells express EMR2, and mechanosensing through this receptor appears to
depend on the stability between the NTF and CTF heterodimer of EMR2. A human
mutation in the GAIN domain destabilizes this interaction and conceivably results
in increased receptor activity upon mechanical challenge, which ultimately leads to
massive mast cell degranulation [181]. Moreover, observations from previous
studies on several aGPCRs can be interpreted in the light of these new insights to
support a unifying model of mechanical susceptibility of this receptor class.

In the murine lung, loss of Gpr116/Adgrf5 causes reduced surfactant uptake,
leading to massive and pathological accumulations of surfactant lipids and proteins
in the alveolar space [182–184] (see also [185]). Given that surfactant is essential to
temper lung surface tension to allow for effortless lung expansion during inhalation,
it is enticing to speculate that GPR116 is involved in monitoring lung tension
(Fig. 1).

Similar to the expression of dCIRL in mechanosensory cells, GPR98/VLGR/
ADGRV1 localizes to inner ear hair cells [186], where it is involved in proper
development of the cochlear organ of Corti [187]. In the future, it will be interesting
to determine the exact role of GPR98 during auditory mechanotransduction in these
cells.

4 Conclusions

In sum, ionotropic mechanosensors are distributed throughout various organ
systems across different species where they assure mechanosensory responses
with latencies on millisecond timescales, rather atypical for metabotropic
mechanosensors. Interestingly, however, in some instances these responses appear
to be adjusted through the activity of GPCRs, which begs the question if ionotropic
and metabotropic mechanosensors form functional units to enable reliable
mechanotransduction.

aGPCRs regulate a multitude of physiological processes signified by the capac-
ity to sense mechanics in different cellular contexts, which could explain the
participation of aGPCRs in various, seemingly unrelated, biological phenomena.
The structural and functional layouts of aGPCRs potentially reflect their optimiza-
tion for the perception of mechanical forces, rather than a general sensitivity to a
range of multiple sensory stimuli known for other GPCR families. Another
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interesting aspect will be to unveil the signaling cascades through which aGPCRs
influence ionotropic mechanotransduction processes and whether ion channels and
GPCRs form functional mechanosensory units. Further research efforts will clarify
the physiological and pharmacological properties underlying the
mechanobiological roles of aGPCRs.
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